Preparation of doped ZnO nanopowders by refluxing method and applications in high voltage varistors

  • Zhong-Yin Zhao
  • Mao-Hua Wang
  • Han-Ping Zhang


The doped ZnO nanopowders were successfully prepared via simple hydrolysis followed by refluxing route in alcohol medium. Several analytic techniques such as XRD, TEM and SEM were used to make characterizations of the as-synthesized samples. The influence of refluxing time on the morphology and average size of the products was investigated. Rod-like doped ZnO powders were easily prepared by refluxing for 5 h. With the elevation of the refluxing time to 20 h, nearly monodispersed sphere-like ZnO nanoparticles can be obtained and the diameter is about 30–50 nm. The results show that refluxing time plays an important role in the formation and oriented growth of ZnO nanocrystals. The powders were consolidated into dense varistors discs by compaction, sintering and evaluated for their electrical characteristics. The varistors can be produced possessing a nonlinear coefficient of ~56, a breakdown voltage of ~7.09 kV/cm.


Breakdown Voltage Refluxing Time Polymerize Complex Method Conventional Ball Milling High Voltage Varistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Changzhou Science, Technology Innovation Project (CC20120031, CC20110048) and Nature Science Foundation of China (No. 51273027) and 2013 Research and Innovation Project for College Graduates.


  1. 1.
    D. Li, H. Haneda, Chemosphere 51, 129–137 (2003)CrossRefGoogle Scholar
  2. 2.
    H.W. Kim, H.S. Kim, H.G. Na, J.C. Yang, Vacuum 86, 789–793 (2012)CrossRefGoogle Scholar
  3. 3.
    A.S. Shaporev, V.K. Ivanov, A.E. Baranchikov, D. Yu, Inorg Mater. 43, 35–39 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Apurba, K. Soumitra, C. Subhadra, J. Nanosci. Nanotechnol. 7, 2778–2784 (2007)CrossRefGoogle Scholar
  5. 5.
    G.H. Chen, J.L. Li, X. Chen et al., J. Mater. Sci. Mater. Electron. 26, 2389–2396 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.J. Xu, S. Ma, R.Q. Chu et al., J. Mater. Sci. Mater. Electron. 26, 4997–5000 (2015)CrossRefGoogle Scholar
  7. 7.
    M.H. Wang, T. Chen, B. Zhang, J. Mater. Sci. Mater. Electron. 26, 5653–5657 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Shi, Q. Cao, Mater. Sci. Eng., B 99, 344–347 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)CrossRefGoogle Scholar
  10. 10.
    C.W. Fang, J.M. Wu, L.T. Lee, H.H. Yeh, Electrochem. Sol. Stat. Lett. 13, 63–69 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Hingorani, V. Pillai, P. Kumar, D.O. Shah, Am. Ceram. Soc. Bull. 66, 1303–1310 (1993)Google Scholar
  12. 12.
    G. Westin, A. Ekstrand et al., J. Mater. Chem. 4, 615–621 (1994)CrossRefGoogle Scholar
  13. 13.
    S.Y. Chu, T.M. Yan et al., Ceram. Int. 26, 733–737 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Singhal, V. Chhabra et al., Mater. Res. Bull. 32, 239–243 (1997)CrossRefGoogle Scholar
  15. 15.
    H.K. Varma, S. Ananthakumar et al., Ceram. Int. 22, 53–56 (1996)CrossRefGoogle Scholar
  16. 16.
    P. Duran, F. Capel, J. Tartaj, C. Moure, J. Eur. Ceram. Soc. 22, 66–77 (2002)Google Scholar
  17. 17.
    S.R. Dhage, P. Renu, V. Ravi, Mater. Lett. 59, 779–781 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Wahab, A. Mishra, S. Yun, I.H. Hwang, J. Mussarat, Biomass Bioenergy 39, 227–236 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Chen, Z. Liu, S. Bai, Sens. Actuators B 143, 620–628 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Li, H. Bala, X. Lv, X. Ma, F. Sun, L. Tang, Z. Wang, Mater. Lett. 61, 690–693 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Vijaya, S.T. Sankara, L. Senthilkumara, C. John Berchmansb, C. Sanjeevirajac, R. Kalai Selvana, Appl. Surf. Sci. 259, 624–630 (2012)CrossRefGoogle Scholar
  22. 22.
    M.H. Wang, F. Zhou, B. Zhang, Powder Technol. 264, 514–518 (2014)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Y. Qin, G.J. Xu, L. Chen, Y. Li, Ceram. Inter. 34, 1697–1701 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Anas, R.V. Mangalaraja, M. Poothayal, S.K. Shukla, Acta Mater. 55, 5792–5801 (2007)CrossRefGoogle Scholar
  25. 25.
    L. Yuke, L. Guorong, Y. Qingrui, Mater. Sci. Eng. B 130, 264–268 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations