Advertisement

Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study

  • Ting-Ting Liu
  • Mao-Hua Wang
  • Han-Ping Zhang
  • Zhong-Yin Zhao
Article
  • 183 Downloads

Abstract

ZnO–Co2O3–Bi2O3 nanocomposites were synthesized by sol–gel method with the aid of xanthan gum as a polymerization agent instead of any organic additives. Xanthan gum was polymerization agent to terminate the growth of doped nanocrystalline ZnO powders and then stabilize them. Spherical and hexagonal doped nanocrystalline ZnO powders with particle size of about 20–45 nm were easily obtained in the presence of xanthan gum. The results showed that ZnO nanopowders were doped in additional metal oxides and Bi7.5Co0.47O11.92 phase was observed at the as-prepared ZnO nanopowders after calcined at 500 and 600 °C. The varistor ceramics sintered at 1150 °C for 2 h in air have a density of 5.52 g/cm3 corresponding to 95.5 % of the theoretical density with breakdown voltage of 3100.91 V/cm and nonlinear coefficient of ~27.19. The experimental results showed the advantage of addition of the xanthan gum for avoiding hard agglomeration and improving electrical performance of the varistors.

Keywords

Co2O3 Breakdown Voltage Xanthomonas Campestris Bismuth Nitrate Polymerization Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Changzhou Science and Technology Innovation Project (CC20140048, CC20130204) and 2014 Research and Innovation Project for College Graduates of Jiangsu Province and the National Natural Science Foundation of China (No. 51273027).

References

  1. 1.
    A. Janotti, C.G. Van der Walle, Rep. Prog. Phys. 72, 1–29 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Benramache, H.B. Temam, A. Arif, A. Guettaf, Optik 125, 1816–1820 (2014)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, C. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 1–22 (2009)Google Scholar
  4. 4.
    C.K. Srikanth, P. Jeevanandam, J. Alloys Compd. 486, 677–684 (2009)CrossRefGoogle Scholar
  5. 5.
    K.C. Barick, M. Aslam, V.P. Dravid, D. Bahadur, J. Colloid Interface Sci. 349, 19–26 (2010)CrossRefGoogle Scholar
  6. 6.
    C.W. Nahm, Ceram. Int. 35, 2679–2685 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Xu, S. Ma, R. Chu, J. Hao, J. Mater. Sci. Mater. Electron. 26, 4997–5000 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)CrossRefGoogle Scholar
  9. 9.
    P. Duran, F. Capel, J. Tartaj, C. Moure, Adv. Mater. 14(2), 137–141 (2002)CrossRefGoogle Scholar
  10. 10.
    S.Y. Chu, T.M. Yan, S.L. Chen, Ceram. Int. 26, 733–737 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Singhal, V. Chhabra, P. Kang, D.O. Shah, Mater. Res. Bull. 32, 239–247 (1997)CrossRefGoogle Scholar
  12. 12.
    H. Toplan, Y. Karakas, Ceram. Int. 27, 761–765 (2001)CrossRefGoogle Scholar
  13. 13.
    P. Duran, F. Capel, J. Tartaj, C. Moure, Adv. Mater. 14(2), 137–141 (2002)CrossRefGoogle Scholar
  14. 14.
    K.Y. Cheong, N. Muti, S.R. Ramanan, Thin Solid Films 410, 142–146 (2002)CrossRefGoogle Scholar
  15. 15.
    E.G. Lori, D.Y. Benjamin, L. Matt, Z. David, Y. Peidong, Inorg. Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Darroudi, Z. Sabouri, R.K. Oskuee et al., Ceram. Int. 40, 4827–4831 (2014)CrossRefGoogle Scholar
  17. 17.
    A.K. Zak, W.H.A. Majid, Mater. Lett. 65, 70–73 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Darroudi, Z. Sabouri et al., Ceram. Int. 40, 4827–4831 (2014)CrossRefGoogle Scholar
  20. 20.
    A.J. Reddy, M.K. Kokila et al., J. Alloys Compd. 509, 5349–5355 (2011)CrossRefGoogle Scholar
  21. 21.
    G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Phys. B 407, 4168–4172 (2012)CrossRefGoogle Scholar
  22. 22.
    R.Y. Hong, J.H. Li, L.L. Chen et al., Powder Technol. 189, 426–432 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Maensiri, J. Sreesongmuang et al., J. Magn. Magn. Mater. 301, 422–432 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Desplanques, M. Grisel et al., Food Hydrocoll. 35, 181–188 (2014)CrossRefGoogle Scholar
  25. 25.
    C.W. Nahm, Ceram. Int. 39, 2121–2177 (2013)Google Scholar
  26. 26.
    M. Zunic, Z. Brankovic, S. Bernik, M.S. Goes et al., J. Eur. Ceram. Soc. 27, 3897–3900 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ting-Ting Liu
    • 1
    • 2
  • Mao-Hua Wang
    • 1
    • 2
  • Han-Ping Zhang
    • 1
    • 2
  • Zhong-Yin Zhao
    • 1
    • 2
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Jiangsu Province Key Laboratory of Fine Petrochemical EngineeringChangzhouPeople’s Republic of China

Personalised recommendations