Skip to main content
Log in

Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO–Co2O3–Bi2O3 nanocomposites were synthesized by sol–gel method with the aid of xanthan gum as a polymerization agent instead of any organic additives. Xanthan gum was polymerization agent to terminate the growth of doped nanocrystalline ZnO powders and then stabilize them. Spherical and hexagonal doped nanocrystalline ZnO powders with particle size of about 20–45 nm were easily obtained in the presence of xanthan gum. The results showed that ZnO nanopowders were doped in additional metal oxides and Bi7.5Co0.47O11.92 phase was observed at the as-prepared ZnO nanopowders after calcined at 500 and 600 °C. The varistor ceramics sintered at 1150 °C for 2 h in air have a density of 5.52 g/cm3 corresponding to 95.5 % of the theoretical density with breakdown voltage of 3100.91 V/cm and nonlinear coefficient of ~27.19. The experimental results showed the advantage of addition of the xanthan gum for avoiding hard agglomeration and improving electrical performance of the varistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Janotti, C.G. Van der Walle, Rep. Prog. Phys. 72, 1–29 (2009)

    Article  Google Scholar 

  2. S. Benramache, H.B. Temam, A. Arif, A. Guettaf, Optik 125, 1816–1820 (2014)

    Article  Google Scholar 

  3. Q. Zhang, C. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 1–22 (2009)

    Google Scholar 

  4. C.K. Srikanth, P. Jeevanandam, J. Alloys Compd. 486, 677–684 (2009)

    Article  Google Scholar 

  5. K.C. Barick, M. Aslam, V.P. Dravid, D. Bahadur, J. Colloid Interface Sci. 349, 19–26 (2010)

    Article  Google Scholar 

  6. C.W. Nahm, Ceram. Int. 35, 2679–2685 (2009)

    Article  Google Scholar 

  7. Z. Xu, S. Ma, R. Chu, J. Hao, J. Mater. Sci. Mater. Electron. 26, 4997–5000 (2015)

    Article  Google Scholar 

  8. K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)

    Article  Google Scholar 

  9. P. Duran, F. Capel, J. Tartaj, C. Moure, Adv. Mater. 14(2), 137–141 (2002)

    Article  Google Scholar 

  10. S.Y. Chu, T.M. Yan, S.L. Chen, Ceram. Int. 26, 733–737 (2000)

    Article  Google Scholar 

  11. M. Singhal, V. Chhabra, P. Kang, D.O. Shah, Mater. Res. Bull. 32, 239–247 (1997)

    Article  Google Scholar 

  12. H. Toplan, Y. Karakas, Ceram. Int. 27, 761–765 (2001)

    Article  Google Scholar 

  13. P. Duran, F. Capel, J. Tartaj, C. Moure, Adv. Mater. 14(2), 137–141 (2002)

    Article  Google Scholar 

  14. K.Y. Cheong, N. Muti, S.R. Ramanan, Thin Solid Films 410, 142–146 (2002)

    Article  Google Scholar 

  15. E.G. Lori, D.Y. Benjamin, L. Matt, Z. David, Y. Peidong, Inorg. Chem. 45, 7535–7543 (2006)

    Article  Google Scholar 

  16. M. Darroudi, Z. Sabouri, R.K. Oskuee et al., Ceram. Int. 40, 4827–4831 (2014)

    Article  Google Scholar 

  17. A.K. Zak, W.H.A. Majid, Mater. Lett. 65, 70–73 (2011)

    Article  Google Scholar 

  18. K. Hembram, D. Sivaprahasam, T.N. Rao, J. Eur. Ceram. Soc. 31, 1905–1913 (2011)

    Article  Google Scholar 

  19. M. Darroudi, Z. Sabouri et al., Ceram. Int. 40, 4827–4831 (2014)

    Article  Google Scholar 

  20. A.J. Reddy, M.K. Kokila et al., J. Alloys Compd. 509, 5349–5355 (2011)

    Article  Google Scholar 

  21. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Phys. B 407, 4168–4172 (2012)

    Article  Google Scholar 

  22. R.Y. Hong, J.H. Li, L.L. Chen et al., Powder Technol. 189, 426–432 (2009)

    Article  Google Scholar 

  23. S. Maensiri, J. Sreesongmuang et al., J. Magn. Magn. Mater. 301, 422–432 (2006)

    Article  Google Scholar 

  24. S. Desplanques, M. Grisel et al., Food Hydrocoll. 35, 181–188 (2014)

    Article  Google Scholar 

  25. C.W. Nahm, Ceram. Int. 39, 2121–2177 (2013)

    Google Scholar 

  26. M. Zunic, Z. Brankovic, S. Bernik, M.S. Goes et al., J. Eur. Ceram. Soc. 27, 3897–3900 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Changzhou Science and Technology Innovation Project (CC20140048, CC20130204) and 2014 Research and Innovation Project for College Graduates of Jiangsu Province and the National Natural Science Foundation of China (No. 51273027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TT., Wang, MH., Zhang, HP. et al. Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study. J Mater Sci: Mater Electron 26, 9056–9062 (2015). https://doi.org/10.1007/s10854-015-3590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3590-2

Keywords

Navigation