Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application

  • A. Nirmalesh Naveen
  • P. Manimaran
  • S. Selladurai


Cobalt oxide (Co3O4)–graphene nanosheets (GNS) composite was prepared using a novel route. Room temperature prepared graphite oxide was exfoliated at low temperature and subsequently reduced to GNS by chemical method. Successful compound formation was confirmed and structural details were obtained from XRD studies. Cobalt oxide was found to crystallize in spinel fcc structure with average crystallite size of 9 nm in the composite. FTIR and XPS study confirms the removal of oxygen containing functional group in reduced graphene and spinel formation of cobalt oxide in the composite. Raman spectra depict the reestablishment of sp2 conjugated network of carbon atoms, on reduction to graphene. FESEM images reveal the nanosheet like morphology of the graphene being retained in the composite and promoting ion diffusion channels. Electrochemical characterization discloses the pseudocapacitive behaviour of the composite material. Higher specific capacitance of 650 F/g was exhibited by GNS–Co3O4 at 5 mV/s scan rate. Symmetrical supercapacitor fabricated using GNS–Co3O4 demonstrated superior power characteristics. Graphene in the composite has substantially increased the electron and ion transport in the electrode material leading to enhanced performance.


Graphene Oxide Co3O4 Cobalt Oxide Graphite Oxide Cyclic Voltammetry Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from Anna University by providing Anna Centenary Research Fellowship (ACRF) for A. Nirmalesh Naveen is highly appreciated (Lr. No. CR/ACRF/2013/37).


  1. 1.
    X.H. Xia, J.P. Tu, Y. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, RSC Adv. 2, 1835–1841 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Jiu, C. Huang, L. Zhang, J. Chang, H. Jiao, S. Zhang, W.B. Jia, J. Mater. Sci. Mater. Electron. (2015). doi: 10.1007/s10854-015-3505-2 Google Scholar
  3. 3.
    M.S. Song, K.M. Lee, Y.R. Lee, I.Y. Kim, T.W. Kim, J.L. Gunjakar, S.J. Hwang, J. Phys. Chem. C 114, 22134–22140 (2010)CrossRefGoogle Scholar
  4. 4.
    R.R. Salunkhe, K. Jang, S.W. Lee, H. Ahn, RSC Adv. 2, 3190–3193 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Hou, C. Yuan, L. Yang, L. Shen, F. Zhang, X. Zhang, RSC Adv. 1, 1521–1526 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Ding, L. Qi, H. Wang, J. Solid State Electrochem. 16, 3621–3633 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Zhi, S. Deng, Y. Zhang, Y. Wang, A. Hu, J. Mater. Chem. A 1, 3171–3176 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Han, P. Xu, X. Jing, J. Wang, D. Song, J. Liu, M. Zhang, J. Solid State Chem 203, 60–67 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, D. Shu, T. Zhang, H. Chen, H. Zhao, Y. Wang, Z. Sun, S. Tang, X. Fang, X. Cao, J. Alloys Compd. 532, 1–9 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.I. Yoon, J.M. Ko, CoNi oxide/carbon-nanofiber composite electrodes for supercapacitors. Int. J. Electrochem. Sci. 3, 1340–1347 (2008)Google Scholar
  11. 11.
    B. Babakhani, D.G. Ivey, Electrochim. Acta 56, 4753–4762 (2011)CrossRefGoogle Scholar
  12. 12.
    A.N. Naveen, S. Selladurai, AIP Conf. Proc. 1591, 246–248 (2014)CrossRefGoogle Scholar
  13. 13.
    J.M. Luo, B. Gao, X.G. Zhang, Mater. Res. Bull. 43, 1119–1125 (2008)CrossRefGoogle Scholar
  14. 14.
    H.Y. Wu, H.W. Wang, Int. J. Electrochem. Sci. 7, 4405–4417 (2012)Google Scholar
  15. 15.
    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Mater. Chem. Phys. 130, 672–679 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Chen, L. Tang, J. Li, Chem. Soc. Rev. 39, 3157–3180 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, J. Mater. Sci. Mater. Electron. 26, 6319–6328 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Jin, H.K. Jeong, T.H. Kim, K.P. So, Y. Cui, W.J. Yu, E.J. Ra, Y.H. Lee, J. Phys. D Appl. Phys. 43, 275402 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2106–2122 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Zhang, W. Lv, X. Xie, D. Tang, C. Liu, Q.H. Yang, Carbon 6, 211–224 (2013)Google Scholar
  22. 22.
    S. Kaniyoor, T.T. Baby, S. Ramaprabhu, J. Mater. Chem. 20, 8467–8469 (2010)CrossRefGoogle Scholar
  23. 23.
    Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, M. Wang, N. J. Chem. 36, 1774–1780 (2012)CrossRefGoogle Scholar
  24. 24.
    C.M. Willemse, K. Tlhomelang, N. Jahed, P.G. Baker, E.I. Iwuoha, Sensors 11, 3970–3987 (2011)CrossRefGoogle Scholar
  25. 25.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  26. 26.
    A.N. Naveen, S. Selladurai, Electrochim. Acta 125, 404–414 (2014)CrossRefGoogle Scholar
  27. 27.
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 25543–25556 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Xie, K. Li, G. Sun, Z. Hu, Z. Lv, J. Wang, C. Zhang, J. Solid State Electrochem. 17, 55–61 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Ren, K.S. Hui, K.N. Hui, J. Mater. Chem. A 1, 5689–5694 (2013)CrossRefGoogle Scholar
  30. 30.
    W. Chen, L. Yan, Nanoscale 2, 559–563 (2010)CrossRefGoogle Scholar
  31. 31.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85(24), 5214–5217 (2000)CrossRefGoogle Scholar
  32. 32.
    R. Narula, S. Reich, Phys. Rev. B 78, 165422 (2–6) (2008)Google Scholar
  33. 33.
    X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6(4), 3206–3213 (2012)CrossRefGoogle Scholar
  34. 34.
    A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  35. 35.
    J.L. Gautier, E. Rios, M. Gracia, J.F. Marco, J.R. Gancedo, Thin Solid Films 311, 51–57 (1997)CrossRefGoogle Scholar
  36. 36.
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646–15654 (2011)CrossRefGoogle Scholar
  37. 37.
    F. Zhang, L. Hao, L. Zhang, X. Zhang, Int. J. Electrochem. Sci. 6, 2943–2954 (2011)Google Scholar
  38. 38.
    B. Zhao, J. Song, P. Liu, W. Xu, T. Fang, Z. Jiao, H. Zhang, Y. Jiang, J. Mater. Chem. 21, 18792–18798 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Park, S.J. Park, S. Kim, Carbon Lett. 13(2), 130–132 (2012)CrossRefGoogle Scholar
  40. 40.
    W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Phys. Chem. Chem. Phys. 13, 14462–14465 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Electrochim. Acta 55, 6973–6978 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Park, S.J. Park, S. Kim, Bull. Korean Chem. Soc. 33(12), 4247–4250 (2012)CrossRefGoogle Scholar
  43. 43.
    V. Khomenko, E.R. Pinero, E. Frackowiak, F. Béguin, Appl. Phys. A 82, 567–573 (2006)CrossRefGoogle Scholar
  44. 44.
    A.N. Naveen, S. Selladurai, Electrochim. Acta 173, 290–301 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Nirmalesh Naveen
    • 1
  • P. Manimaran
    • 1
  • S. Selladurai
    • 1
  1. 1.Ionics Lab, Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations