Advertisement

Covalent grafting of a-CNTs on copper phthalocyanine for the preparation of PEN nanocomposites with high dielectric constant and high thermal stability

  • Zejun Pu
  • Kun Jia
  • Xiaobo Liu
Article

Abstract

Functionalization of carbon nanotubes (CNTs) is considered as an essential step to enable their manipulation and application in potential end-use products. In this paper, novel ternary dielectric polymer-based nanocomposite films, consisting of hyperbranched copper phthalocyanine grafted carbon nanotubes and polyarylene ether nitriles (PEN/HBCuPc-g-CNTs), were prepared via solution-casting method. The CNTs are enwrapped by a functional intermediate HBCuPc thick layer and formed rough shell on the surface of CNTs to ensure a good dispersion of CNTs in PEN matrix and suppress the mobility of free charge carriers effectively, resulting in significant improvement of the dielectric properties of PEN/HBCuPc-g-CNTs nanocomposite films in contrast to PEN/CNTs. Furthermore, around 38 wt% of phthalocyanine oligomer based on the total weight of the CNTs can be covalently grafted to the surface of the CNTs. Compared with raw CNTs, grafted CNTs showed better dispersion and stronger interfacial adhesion to PEN matrix. SEM images showed that HBCuPc-CNT was perfectly embedded in the matrix and no pullout phenomenon could be observed, thus resulting in significant improvement of the mechanical and thermal properties of PEN/HBCuPc-g-CNTs nanocomposite films compared to pure PEN films. For 2.0 wt% HBCuPc-g-CNTs reinforced PEN nanocomposite films, the tensile strength and T g were increased by 24.5 % and 5 °C, respectively, in comparison with those of pure PEN.

Keywords

Phthalocyanine Nanocomposite Film Filler Content Phthalonitrile Copper Phthalocyanine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank for financial support of this work from the National Natural Science Foundation (Nos. 51173021, 51373028, 51403029) and “863” National Major Program of High Technology (2012AA03A212).

References

  1. 1.
    Y. Bar-Cohen, J. Spacecr. Rockets 39, 822–827 (2002)CrossRefGoogle Scholar
  2. 2.
    Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li, G. Hu, Prog. Mater. Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  3. 3.
    R.H. Baughman, A.A. Zakhidov, W.A. Heer, Science 297, 787–792 (2002)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, H. Li, M. Poh, Nature 419, 284–287 (2002)CrossRefGoogle Scholar
  5. 5.
    P. Brochu, Q. Pei, Macromol. Rapid Commun. 31, 10–36 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Dang, S. Yao, J. Yuan, J. Bai, J. Phys. Chem. C 114, 13204–13209 (2010)CrossRefGoogle Scholar
  7. 7.
    T.P. Schuman, F. Dogan, ACS Appl. Mater. Interfaces 5, 1917–1927 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Pothukuchi, Y. Li, C.P. Wong, J. Appl. Polym. Sci. 93, 1531–1538 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Rao, C.P. Wong, J. Appl. Polym. Sci. 92, 2228–2231 (2004)CrossRefGoogle Scholar
  10. 10.
    Z. Pu, L. Tong, Z. Wang, X. Huang, K. Jia, X. Liu, J. Mater. Sci. Mater. Electron. 25, 5051–5059 (2014)CrossRefGoogle Scholar
  11. 11.
    B.S. Yim, J.M. Kim, J. Mater. Sci. Mater. Electron. 26, 1678–1689 (2015)CrossRefGoogle Scholar
  12. 12.
    T.W. Lee, Y. Kwon, J.J. Park, L. Pu, T. Hayakawa, M. Kakimoto, Communication 28, 1657–1662 (2007)Google Scholar
  13. 13.
    Z. Dang, L. Wang, Y. Yin, Q. Zhang, Q. Lei, Adv. Mater. 19, 852–857 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005)CrossRefGoogle Scholar
  15. 15.
    D. Wu, L. Wu, M. Zhang, Y. Zhao, Polym. Degrad. Stabil. 93, 1577–1584 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Vijayakumar, H.A. Pohl, J. Polym. Sci. Polym. Phys. Ed. 22, 1439–1451 (1984)CrossRefGoogle Scholar
  17. 17.
    T.W. Lee, Y. Kwon, J.J. Park, L. Pu, T. Hayakawa, M. Kakimoto, Macromol. Rapid. Commun. 28, 1657–1662 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Gao, X. Yan, Y. Kwon, T. Hayakawa, M. Kakimoto, T. Goodson, J. Am. Chem. Soc. 128, 14820–14821 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Zou, J. Yang, Y. Zhan, X. Yang, J. Zhong, R. Zhao, X. Liu, J. Appl. Polym. Sci. 125, 3829–3835 (2012)CrossRefGoogle Scholar
  20. 20.
    Z. Pu, L. Chen, L. Tong, Y. Long, X. Huang, X. Liu, Mater. Lett. 109, 116–119 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Zhang, Y. Chen, X. Zhuang, G. Liu, B. Yu, E. Kang, J. Zhu, Y. Li, J. Polym. Sci. Part A Polym. Chem. 48, 2642–2649 (2010)CrossRefGoogle Scholar
  22. 22.
    Z. Pu, H. Tang, X. Huang, J. Yang, Y. Zhan, R. Zhao, X. Liu, Colloids Surf. A 415, 125–133 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Pu, L. Chen, Y. Long, L. Tong, X. Huang, X. Liu, J. Polym. Res. 20, 1–9 (2013)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, W. Yang, J. Wei, F. Meng, X. Liu, Mater. Lett. 123, 6–9 (2014)CrossRefGoogle Scholar
  25. 25.
    S.P. Liu, W.L. Hsu, K.C. Chang, J.M. Yeh, J. Appl. Polym. Sci. 113, 992–999 (2009)CrossRefGoogle Scholar
  26. 26.
    Z. Pu, X. Zhou, X. Yang, K. Jia, X. Liu, J. Magn. Magn. Mater. 385, 368–376 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Lele, M. Mackley, G. Galgali, C. Ramesh, J. Rheol. 46, 1091–1110 (2002)CrossRefGoogle Scholar
  28. 28.
    H.S. Kim, B.H. Park, J.S. Yoon, H.J. Jin, Eur. Polym. J. 43, 1729–1735 (2007)CrossRefGoogle Scholar
  29. 29.
    M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194–5205 (2006)CrossRefGoogle Scholar
  30. 30.
    H. Guo, Y. Zhan, Z. Chen, F. Meng, J. Wei, X. Liu, J. Mater. Chem. A 1, 2286–2296 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Tang, Z. Ma, J. Zhong, J. Yang, R. Zhao, X. Liu, Colloids Surf. A 384, 311–317 (2011)CrossRefGoogle Scholar
  32. 32.
    F. He, S. Lau, H.L. Chan, J. Fan, Adv. Mater. 21, 710–715 (2009)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, G. Zhang, D. Xu, J. Wang, X. Yang, Z. Jiang, RSC Adv. 4, 28721–28727 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations