Skip to main content
Log in

Improved ferroelectricity and ferromagnetism of Eu-modified BiFeO3–BaTiO3 lead-free multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic ceramics of 0.75Bi1−x Eu x FeO3–0.25BaTiO3 + 1 mol% MnO2 were synthesized by a conventional solid state reaction method and the effects of Eu doping on microstructure, ferroelectric, ferromagnetic and piezoelectric properties of the ceramics were investigated. All the ceramics exhibit a pure perovskite structure without any secondary phases. After the addition of Eu3+ ions, the crystal structure of the ceramics is transformed from rhombohedral to tetragonal phase at x = 0.025. The ferroelectricity and ferromagnetism of the ceramics are improved. For the ceramic with x = 0.025, the optimum remanent polarization of 18.3 μC/cm2 and good piezoelectricity of 82 pC/N are obtained. The saturated magnetization M s and remanent magnetism M r of the ceramics are improved by 165 and 141 % with x increasing from 0 to 0.175, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. He, C.H. Yeh, J.C. Yang, G. Singh-Bhalla, C.W. Liang, P.W. Chiu, G. Catalan, L.W. Martin, Y.H. Chu, J.F. Scott, R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012)

    Article  Google Scholar 

  2. J.H. Lee, M.A. Oak, H.J. Choi, J.Y. Son, H.M. Jang, J. Mater. Chem. 22, 1667–1672 (2012)

    Article  Google Scholar 

  3. T.R. Paudel, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B:Condens. Mater. 85, 104409 (2012)

    Article  Google Scholar 

  4. S. Goswami, D. Bhattacharya, P. Choudhury, B. Ouladdiaf, T. Chatterji, Appl. Phys. Lett. 99, 073106 (2011)

    Article  Google Scholar 

  5. S.W. Lee, C.S. Kim, J. Magn. Magn. Mater. 304, e772–e774 (2006)

    Article  Google Scholar 

  6. C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, J. Cryst. Growth 291, 135–139 (2006)

    Article  Google Scholar 

  7. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Res. Bull. 40, 2073–2079 (2005)

    Article  Google Scholar 

  8. M.M. Kumar, V.R. Palker, k. Srinvivas, and S.V. Suryanarayana, Appl. Phys. Lett., 76, 2764-2766 (2000)

  9. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, A.S. Siri, J. Eur. Ceram. Soc. 26, 3027–3030 (2006)

    Article  Google Scholar 

  10. I. Sosnowska, M. Azuma, R. Przeniosło, D. Wardecki, W.T. Chen, K. Oka, Y. Shimakawa, Inorg. Chem. 52, 13269–13277 (2013)

    Article  Google Scholar 

  11. H. Naganuma, J. Miura, S. Okamura, Appl. Phys. Lett. 93, 2901 (2008)

    Article  Google Scholar 

  12. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  Google Scholar 

  13. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759–4765 (2014)

    Article  Google Scholar 

  14. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    Google Scholar 

  15. S. Vura, P.S. Anil, A. Kumarb, A. Senyshync, R. Ranjan, J. Magn. Magn. Mater. 365, 76–82 (2014)

    Article  Google Scholar 

  16. H.Y. Dai, Z.P. Chen, R.Z. Xue, T. Li, H.Z. Liu, Y.Q. Wang, Appl. Phys. A 111, 907–912 (2013)

    Article  Google Scholar 

  17. X.Q. Zhang, Y. Sui, X.J. Wang, Y. Wang, Z. Wang, J. Alloys Compd. 507, 157–161 (2010)

    Article  Google Scholar 

  18. D.M. Lin, K.W. Kwok, H.L.W. Chan, Mater. Chem. Phys. 109, 455–458 (2008)

    Article  Google Scholar 

  19. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957–2961 (2009)

    Article  Google Scholar 

  20. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.Z. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177–1183 (2013)

    Article  Google Scholar 

  21. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443–446 (1969)

    Article  Google Scholar 

  22. X.H. Wang, P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 89, 431–437 (2006)

    Article  Google Scholar 

  23. X.C. Wu, M.J. Tian, Y.Q. Guo, Q.J. Zheng, L.L. Luo, D.M. Lin, J. Mater. Sci.: Mater. Electron. 26, 978–984 (2015)

    Google Scholar 

  24. Q.J. Zheng, L.L. Luo, K.H. Lam, N. Jang, Y.Q. Guo, D.M. Lin, J. Appl. Phys. 116, 184101 (2014)

    Article  Google Scholar 

  25. X.M. Chen, X.X. Gong, T.N. Li, Y. He, P. Liu, J. Alloys Compd. 507, 535–541 (2010)

    Article  Google Scholar 

  26. Q. Zhang, X.H. Zhu, Y.H. Xu, H.B. Gao, Y.J. Xiao, D.Y. Liang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, J. Alloys Compd. 546, 57–62 (2013)

    Article  Google Scholar 

  27. K.S. Nalwa, A. Garg, J. Appl. Phys. 103, 044101 (2008)

    Article  Google Scholar 

  28. R. Haumont, J. Kreisel, P. Bouvier, Phase Transit. 79, 1043–1064 (2006)

    Article  Google Scholar 

  29. Q.M. Hang, W.K. Zhou, X.H. Zhu, J.M. Zhu, Z.G. Liu, A.K. Talaat, J. Adv. Ceram. 2, 252–259 (2013)

    Article  Google Scholar 

  30. A. Ianculescu, L. Mitoseriu, H. Chiriac, M.M. Carnasciali, A. Braileanu, R. Trusca, J. Optoelectron. Adv. Mater. 10, 1805–1809 (2008)

    Google Scholar 

  31. K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, J. Solid State Chem. 184, 2381–2386 (2011)

    Article  Google Scholar 

  32. S.K. Pradhan, B.K. Roul, Phys. B: Condens. Mater. 406, 3313–3317 (2011)

    Article  Google Scholar 

  33. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670–675 (2012)

    Article  Google Scholar 

  34. Z. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. Yu, X. Zhao, J. Am. Ceram. Soc. 93, 2743–2747 (2010)

    Article  Google Scholar 

  35. Y.J. Zhang, H.G. Zhang, J.H. Yin, H.W. Zhang, J.L. Chen, W.Q. Wang, G.H. Wu, J. Magn. Magn. Mater. 322, 2251–2255 (2010)

    Article  Google Scholar 

  36. R.D. Shannon, Acta Cryst. A. 32, 751–767 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Education Department of Sichuan Province (15ZA0037, 15ZB0032), and Science and Technology Bureau of Sichuan Province (2014JY0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Zhou, L., Zou, X. et al. Improved ferroelectricity and ferromagnetism of Eu-modified BiFeO3–BaTiO3 lead-free multiferroic ceramics. J Mater Sci: Mater Electron 26, 8840–8847 (2015). https://doi.org/10.1007/s10854-015-3564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3564-4

Keywords

Navigation