Skip to main content
Log in

Structural, optical and magnetic properties of Cr doped In2O3 powders and thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The (In1−xCrx)2O3 powders as well as thin films of x = 0.03, 0.05 and 0.07 were synthesized using a solid state reaction and an electron beam evaporation technique (on glass substrate), respectively. The influence of Cr doping concentration on structural, optical and magnetic properties of the In2O3 samples was systematically studied. The X-ray diffraction results confirmed that all the Cr doped In2O3 samples exist cubic structure of In2O3 without any secondary phases presence. The chemical composition analyses showed that all the Cr doped In2O3 compounds were nearly stoichiometric. The X-ray photoelectron spectroscopy analysis of the Cr doped In2O3 thin films showed an increase of oxygen vacancies with Cr concentration and the existence of Cr as Cr3+ state in the host In2O3 lattice. A small blue shift in the optical band gap was observed in the powder compounds, when the dopant concentration increased from x = 0.03 to x = 0.07. In thin films, the band gap found to increase from 3.63 to 3.74 eV, with an increase of Cr concentration. The magnetic measurements show that the undoped In2O3 bulk powder sample has the diamagnetic property at room temperature. And a trace of paramagnetism was observed in Cr doped In2O3 powders. However (In1−xCrx)2O3 thin films (x = 0.00, 0.03, 0.05 and 0.07) samples shows soft ferromagnetism. The observed ferromagnetism in thin films are attributed to oxygen vacancies created during film prepared in vacuum conditions. The ferromagnetic exchange interactions are established between metal cations via free electrons trapped in oxygen vacancies (F-centers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Ohno, A window on future of spintronics. Nat. Mater. 9, 952–954 (2010)

    Article  Google Scholar 

  2. J.K. Furdyna, J. Kossut, Diluted magnetic semiconductors, in Semiconductors and Semimetals, vol. 25, ed. by R.K. Willardson, A.C. Beer (Academic Press, London, 1988), pp. 1–462

    Google Scholar 

  3. E.L. Nagaev, Physics of Magnetic Semiconductors (Mir, Moscow, 1986)

    Google Scholar 

  4. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)

    Article  Google Scholar 

  5. M. Zhong, S. Wang, Y. Li, Y. Hu, M. Zhu, H. Jin, Y. Li, H. Zhang, H. Zhao, Room temperature ferromagnetic Cr–Ni codoped ZnO diluted magnetic semiconductors synthesized by hydrothermal method under high pulsed magnetic field. Ceram. Int. 41, 451–457 (2015)

    Article  Google Scholar 

  6. S. Mehraj, M.S. Ansari, Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Phys. E 65, 84–92 (2015)

    Article  Google Scholar 

  7. A.A. Faisal, E. Al-Arfaj, A.A. Al-Ghamdi, B.D. Stein, Y. Losovyj, L.M. Bronstein, F.S. Shokr, W.E. Mahmoud, Structure and magnetic properties of diluted magnetic metal oxides based on Cu-doped CeO2 nanopowders. Ceram. Int. 41, 1115–1119 (2015)

    Article  Google Scholar 

  8. N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, C. Krishnamoorthi, M. Kuppan, M. Rigana Begam, D. Sreekantha Reddy, I. Omkaram, Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull. 61, 486–491 (2015)

    Article  Google Scholar 

  9. A.V. Singh, R.M. Mehra, N. Buthrath, A. Wakahara, A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J. Appl. Phys. 90, 5661–5665 (2001)

    Article  Google Scholar 

  10. P. Kharel, C. Sudakar, M.B. Sahana, G. Lawes, R. Suryanarayanan, R. Naik, V.M. Naik, Room temperature ferromagnetism in Cr-doped In2O3 on high vacuum annealing of thin films and bulk samples. J. Appl. Phys. 101, 09H117 (2007)

    Article  Google Scholar 

  11. H. Kim, M. Osofsky, M.M. Miller, S.B. Qadri, R.C.Y. Auyeung, A. Pique, Room temperature ferromagnetism in transparent Fe-doped In2O3 films. Appl. Phys. Lett. 100, 032404 (2012)

    Article  Google Scholar 

  12. N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, Co-doped In2O3 thin films: room temperature ferromagnets. J. Magn. Magn. Mater. 302, 228–231 (2006)

    Article  Google Scholar 

  13. V. Olmos, R. America, J.I.G. Peralta, R.Y.S. Berru, A.L.F. Osorio, Diluted magnetic semiconductors based on Mn-doped In2O3 nanoparticles. J. Alloys Compd. 615, S522–S525 (2014)

    Article  Google Scholar 

  14. N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, M. Kuppan, M. Rigana Begam, D. Sreekantha Reddy, Structural, optical and magnetic properties of (In1−xNix)2O3 (0 ≤ x ≤ 0.09) powders synthesized by solid state reaction. Mater. Sci. Semicond. Process. 18, 22–27 (2014)

    Article  Google Scholar 

  15. D.J. Craik, Magnetic Oxides (Wiley, New York, 1975)

    Google Scholar 

  16. G. Peleckis, X.L. Wang, S.X. Dou, Ferromagnetism in Mn-doped In2O3 oxide. J. Magn. Magn. Mater. 301, 308–311 (2006)

    Article  Google Scholar 

  17. B.D. Cullity, Elements of X-ray Diffraction (Wesley, California, 1978)

  18. T. Mega, K. Tokao, J. Shimomura, State analysis of electrolytic chromate film by XPS and SXS. Appl. Surf. Sci. 121(122), 120–124 (1997)

    Article  Google Scholar 

  19. N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, C. Krishnamoorthi, M. Rigana Begam, I. Omkaram, D. Sreekantha Reddy, Room temperature ferromagnetism in Cu-doped In2O3 thin films. J. Supercond. Novel Mag. 28, 2089–2095 (2015)

    Article  Google Scholar 

  20. H. Baqiah, N.B. Ibrahim, M.H. Abdi, S.A. Halim, Electrical transport, microstructure and optical properties of Cr-doped In2O3 thin film prepared by sol–gel method. J. Alloys Compd. 575, 198–206 (2013)

    Article  Google Scholar 

  21. P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 12, 593–601 (1931)

    Google Scholar 

  22. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  23. S. Sambasivam, B.C. Choi, J.G. Lin, Intrinsic magnetism in Fe doped SnO2 nanoparticles. J. Solid State Chem. 184, 199–203 (2011)

    Article  Google Scholar 

  24. A. Caricato, M. Cesaria, A. Luches, M. Martino, G. Maruccio, D. Valerini, M. Catalano, A. Cola, M. Manera, M. Lomascolo, A. Taurino, R. Rella, Electrical and optical properties of ITO and ITO/Cr-doped ITO films. Appl. Phys. A Mater. Sci. Process. 101, 753–758 (2010)

    Article  Google Scholar 

  25. N.B. Ukah, R.K. Gupta, P.K. Kahol, K. Ghosh, Influence of oxygen growth pressure on laser ablated Cr-doped In2O3 thin films. Appl. Surf. Sci. 255, 9420–9424 (2009)

    Article  Google Scholar 

  26. Y. Guo, S.J. Clark, J. Robertson, Electronic and magnetic properties of Ti2O3, Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional. J. Phys. Condens. Matter. 24, 325504 (2012)

    Article  Google Scholar 

  27. S.M. Watts, S. Wirth, S. Von Molnar, A. Barry, J.M.D. Coey, Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B 61, 9621–9628 (2000)

    Article  Google Scholar 

  28. A.P.S. Gaur, S. Sahoo, R.K. Katiyar, C. Rinaldi, J.F. Scott, R.S. Katiyar, Absence of magnetism in Cr-doped In2O3: a case study of phase separation versus phase formation. J. Phys. D Appl. Phys. 44, 49–53 (2011)

    Google Scholar 

  29. G. Peleckis, X.L. Wang, S.X. Dou, Room-temperature ferromagnetism in Mn and Fe codoped In2O3. Appl. Phys. Lett. 88, 132507 (2006)

    Article  Google Scholar 

  30. A. Paola, M. Cesaria, V. Fiorentini, Impurity–vacancy complexes and ferromagnetism in doped sesquioxides. Phys. Rev. B 89, 134423 (1–5) (2014)

    Google Scholar 

  31. N.H. Hong, J. Sakai, F. Gervais, Magnetism due to oxygen vacancies and/or defects in undoped semiconducting and insulating oxide thin films. J. Magn. Magn. Mater. 316, 214–217 (2007)

    Article  Google Scholar 

  32. L.M. Huang, C. Århammar, C.M. Araújo, F. Silvearv, R. Ahuja, Tuning magnetic properties of In2O3 by control of intrinsic defects. EPL 89, 47005 (1–5) (2010)

    Article  Google Scholar 

  33. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  Google Scholar 

  34. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (1–7) (2008)

    Google Scholar 

  35. H. Peng, J. Li, S.S. Li, J.B. Xia, Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79, 092411 (1–4) (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam, 603102, Tamilnadu, India, for providing financial (Grant No. CSR-KN/CRS-17/2011-12/589) support to carry out the present work. The authors are highly thankful to Pondicherry central university for providing the vibrating sample magnetometer facilities. Authors also thank VIT-SIF for providing XRD and UV–Vis–NIR spectrophotometer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Krishna, N., Kaleemulla, S., Amarendra, G. et al. Structural, optical and magnetic properties of Cr doped In2O3 powders and thin films. J Mater Sci: Mater Electron 26, 8635–8643 (2015). https://doi.org/10.1007/s10854-015-3538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3538-6

Keywords

Navigation