Structural, optical and magnetic properties of Cr doped In2O3 powders and thin films

  • N. Sai Krishna
  • S. Kaleemulla
  • G. Amarendra
  • N. Madhusudhana Rao
  • C. Krishnamoorthi
  • I. Omkaram
  • D. Sreekantha Reddy


The (In1−xCrx)2O3 powders as well as thin films of x = 0.03, 0.05 and 0.07 were synthesized using a solid state reaction and an electron beam evaporation technique (on glass substrate), respectively. The influence of Cr doping concentration on structural, optical and magnetic properties of the In2O3 samples was systematically studied. The X-ray diffraction results confirmed that all the Cr doped In2O3 samples exist cubic structure of In2O3 without any secondary phases presence. The chemical composition analyses showed that all the Cr doped In2O3 compounds were nearly stoichiometric. The X-ray photoelectron spectroscopy analysis of the Cr doped In2O3 thin films showed an increase of oxygen vacancies with Cr concentration and the existence of Cr as Cr3+ state in the host In2O3 lattice. A small blue shift in the optical band gap was observed in the powder compounds, when the dopant concentration increased from x = 0.03 to x = 0.07. In thin films, the band gap found to increase from 3.63 to 3.74 eV, with an increase of Cr concentration. The magnetic measurements show that the undoped In2O3 bulk powder sample has the diamagnetic property at room temperature. And a trace of paramagnetism was observed in Cr doped In2O3 powders. However (In1−xCrx)2O3 thin films (x = 0.00, 0.03, 0.05 and 0.07) samples shows soft ferromagnetism. The observed ferromagnetism in thin films are attributed to oxygen vacancies created during film prepared in vacuum conditions. The ferromagnetic exchange interactions are established between metal cations via free electrons trapped in oxygen vacancies (F-centers).


In2O3 Dilute Magnetic Semiconductor Room Temperature Ferromagnetism Dilute Magnetic Semiconductor Material Electron Beam Evaporation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam, 603102, Tamilnadu, India, for providing financial (Grant No. CSR-KN/CRS-17/2011-12/589) support to carry out the present work. The authors are highly thankful to Pondicherry central university for providing the vibrating sample magnetometer facilities. Authors also thank VIT-SIF for providing XRD and UV–Vis–NIR spectrophotometer facilities.


  1. 1.
    H. Ohno, A window on future of spintronics. Nat. Mater. 9, 952–954 (2010)CrossRefGoogle Scholar
  2. 2.
    J.K. Furdyna, J. Kossut, Diluted magnetic semiconductors, in Semiconductors and Semimetals, vol. 25, ed. by R.K. Willardson, A.C. Beer (Academic Press, London, 1988), pp. 1–462Google Scholar
  3. 3.
    E.L. Nagaev, Physics of Magnetic Semiconductors (Mir, Moscow, 1986)Google Scholar
  4. 4.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)CrossRefGoogle Scholar
  5. 5.
    M. Zhong, S. Wang, Y. Li, Y. Hu, M. Zhu, H. Jin, Y. Li, H. Zhang, H. Zhao, Room temperature ferromagnetic Cr–Ni codoped ZnO diluted magnetic semiconductors synthesized by hydrothermal method under high pulsed magnetic field. Ceram. Int. 41, 451–457 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Mehraj, M.S. Ansari, Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Phys. E 65, 84–92 (2015)CrossRefGoogle Scholar
  7. 7.
    A.A. Faisal, E. Al-Arfaj, A.A. Al-Ghamdi, B.D. Stein, Y. Losovyj, L.M. Bronstein, F.S. Shokr, W.E. Mahmoud, Structure and magnetic properties of diluted magnetic metal oxides based on Cu-doped CeO2 nanopowders. Ceram. Int. 41, 1115–1119 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, C. Krishnamoorthi, M. Kuppan, M. Rigana Begam, D. Sreekantha Reddy, I. Omkaram, Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull. 61, 486–491 (2015)CrossRefGoogle Scholar
  9. 9.
    A.V. Singh, R.M. Mehra, N. Buthrath, A. Wakahara, A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J. Appl. Phys. 90, 5661–5665 (2001)CrossRefGoogle Scholar
  10. 10.
    P. Kharel, C. Sudakar, M.B. Sahana, G. Lawes, R. Suryanarayanan, R. Naik, V.M. Naik, Room temperature ferromagnetism in Cr-doped In2O3 on high vacuum annealing of thin films and bulk samples. J. Appl. Phys. 101, 09H117 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Kim, M. Osofsky, M.M. Miller, S.B. Qadri, R.C.Y. Auyeung, A. Pique, Room temperature ferromagnetism in transparent Fe-doped In2O3 films. Appl. Phys. Lett. 100, 032404 (2012)CrossRefGoogle Scholar
  12. 12.
    N.H. Hong, J. Sakai, N.T. Huong, V. Brizé, Co-doped In2O3 thin films: room temperature ferromagnets. J. Magn. Magn. Mater. 302, 228–231 (2006)CrossRefGoogle Scholar
  13. 13.
    V. Olmos, R. America, J.I.G. Peralta, R.Y.S. Berru, A.L.F. Osorio, Diluted magnetic semiconductors based on Mn-doped In2O3 nanoparticles. J. Alloys Compd. 615, S522–S525 (2014)CrossRefGoogle Scholar
  14. 14.
    N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, M. Kuppan, M. Rigana Begam, D. Sreekantha Reddy, Structural, optical and magnetic properties of (In1−xNix)2O3 (0 ≤ x ≤ 0.09) powders synthesized by solid state reaction. Mater. Sci. Semicond. Process. 18, 22–27 (2014)CrossRefGoogle Scholar
  15. 15.
    D.J. Craik, Magnetic Oxides (Wiley, New York, 1975)Google Scholar
  16. 16.
    G. Peleckis, X.L. Wang, S.X. Dou, Ferromagnetism in Mn-doped In2O3 oxide. J. Magn. Magn. Mater. 301, 308–311 (2006)CrossRefGoogle Scholar
  17. 17.
    B.D. Cullity, Elements of X-ray Diffraction (Wesley, California, 1978)Google Scholar
  18. 18.
    T. Mega, K. Tokao, J. Shimomura, State analysis of electrolytic chromate film by XPS and SXS. Appl. Surf. Sci. 121(122), 120–124 (1997)CrossRefGoogle Scholar
  19. 19.
    N. Sai Krishna, S. Kaleemulla, G. Amarendra, N. Madhusudhana Rao, C. Krishnamoorthi, M. Rigana Begam, I. Omkaram, D. Sreekantha Reddy, Room temperature ferromagnetism in Cu-doped In2O3 thin films. J. Supercond. Novel Mag. 28, 2089–2095 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Baqiah, N.B. Ibrahim, M.H. Abdi, S.A. Halim, Electrical transport, microstructure and optical properties of Cr-doped In2O3 thin film prepared by sol–gel method. J. Alloys Compd. 575, 198–206 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 12, 593–601 (1931)Google Scholar
  22. 22.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  23. 23.
    S. Sambasivam, B.C. Choi, J.G. Lin, Intrinsic magnetism in Fe doped SnO2 nanoparticles. J. Solid State Chem. 184, 199–203 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Caricato, M. Cesaria, A. Luches, M. Martino, G. Maruccio, D. Valerini, M. Catalano, A. Cola, M. Manera, M. Lomascolo, A. Taurino, R. Rella, Electrical and optical properties of ITO and ITO/Cr-doped ITO films. Appl. Phys. A Mater. Sci. Process. 101, 753–758 (2010)CrossRefGoogle Scholar
  25. 25.
    N.B. Ukah, R.K. Gupta, P.K. Kahol, K. Ghosh, Influence of oxygen growth pressure on laser ablated Cr-doped In2O3 thin films. Appl. Surf. Sci. 255, 9420–9424 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Guo, S.J. Clark, J. Robertson, Electronic and magnetic properties of Ti2O3, Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional. J. Phys. Condens. Matter. 24, 325504 (2012)CrossRefGoogle Scholar
  27. 27.
    S.M. Watts, S. Wirth, S. Von Molnar, A. Barry, J.M.D. Coey, Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B 61, 9621–9628 (2000)CrossRefGoogle Scholar
  28. 28.
    A.P.S. Gaur, S. Sahoo, R.K. Katiyar, C. Rinaldi, J.F. Scott, R.S. Katiyar, Absence of magnetism in Cr-doped In2O3: a case study of phase separation versus phase formation. J. Phys. D Appl. Phys. 44, 49–53 (2011)Google Scholar
  29. 29.
    G. Peleckis, X.L. Wang, S.X. Dou, Room-temperature ferromagnetism in Mn and Fe codoped In2O3. Appl. Phys. Lett. 88, 132507 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Paola, M. Cesaria, V. Fiorentini, Impurity–vacancy complexes and ferromagnetism in doped sesquioxides. Phys. Rev. B 89, 134423 (1–5) (2014)Google Scholar
  31. 31.
    N.H. Hong, J. Sakai, F. Gervais, Magnetism due to oxygen vacancies and/or defects in undoped semiconducting and insulating oxide thin films. J. Magn. Magn. Mater. 316, 214–217 (2007)CrossRefGoogle Scholar
  32. 32.
    L.M. Huang, C. Århammar, C.M. Araújo, F. Silvearv, R. Ahuja, Tuning magnetic properties of In2O3 by control of intrinsic defects. EPL 89, 47005 (1–5) (2010)CrossRefGoogle Scholar
  33. 33.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  34. 34.
    Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (1–7) (2008)Google Scholar
  35. 35.
    H. Peng, J. Li, S.S. Li, J.B. Xia, Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79, 092411 (1–4) (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Sai Krishna
    • 1
  • S. Kaleemulla
    • 1
  • G. Amarendra
    • 2
    • 3
  • N. Madhusudhana Rao
    • 1
  • C. Krishnamoorthi
    • 1
  • I. Omkaram
    • 4
  • D. Sreekantha Reddy
    • 5
  1. 1.Thin Films Laboratory, School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.UGC-DAE-CSR, Kalpakkam NodeKokilameduIndia
  4. 4.Department of Electronics and Radio EngineeringKyung Hee UniversityYongin-siKorea
  5. 5.Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations