Enhanced luminous efficiency in Pr3+ activated Ca0.5La(MoO4)2 red phosphor with blue excitation for WLED applications

  • Rajagopalan Krishnan
  • Jagannathan Thirumalai
  • Venkatakrishnan Mahalingam
  • Srinivas Mantha


In this article, we have investigated the down-conversion luminescence properties of Ca0.5La(MoO4)2 doped with trivalent Pr3+ (substitute for La3+ site) and codoped with Mn2+ (substitute for Ca2+ site). The powder X-ray diffraction patterns confirm that the single crystalline phosphor powders belong to the scheelite-type tetragonal crystal structure. The photoluminescence (PL) excitation spectra of Ca0.5La(MoO4)2:Pr3+ exhibits a charge transfer band centered at 276 nm along with three intense sharp absorption bands identified at 449, 475, and 488 nm which are attributed to the ff electronic transitions of 3H 4 (1)  → 3P2, 3H 4 (1)  → 3P1, 3H 4 (1)  → 3P0 of Pr3+, respectively. Upon optical excitation, the depopulation of excited 3P0 level into the 3F2 lower levels of Pr3+ is governed by radiative transfer of energy, as a result, high intense red emission peak was observed at 647 nm. The change in PL emission intensity as a function of Pr3+ concentrations, Mn2+ concentrations, and different excitation wavelengths have been investigated in detail. Further, the codoping of alkali metal chlorides MCl (M = Na, K, Li) into the Ca0.5La(MoO4)2:Pr3+ phosphor greatly improves the luminescence intensity of the transition 3P0 → 3F2 which can be explained by charge compensation effect. To ensure the colour richness and quality of its emission, the photometric parameters were estimated using spectral energy distribution functions of Ca0.5La(MoO4)2:Pr3+. The luminous efficacy of radiation for NaCl codoped Ca0.5La(MoO4)2:Pr3+ phosphor was estimated to be 154 lm/W and the percentage of luminous efficiency is 23 %.


Energy Transfer Process Luminous Efficiency Colour Correlate Temperature Colour Render Index Alkali Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support provided by Science and Engineering Research Board (SR/FTTP/PS-135/2011), Govt. of India. Also, the authors gratefully acknowledge Alagappa University-Karaikudi, SAIF IIT-Bombay, and DST unit of Nano Science Centre, IIT-Madras, for extending their instrumentation facilities for characterization.


  1. 1.
    K. Li, D. Geng, M. Shang, Y. Zhang, H. Lian, J. Lin, J. Phys. Chem. C 118, 11026–11034 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Xia, J. Zhuang, A. Meijerink, X. Jing, Dalton Trans. 42, 6327–6336 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, Z. Lu, P. Han, L. Wang, Q. Zhang, J. Mater. Chem. C 1, 54–57 (2013)CrossRefGoogle Scholar
  4. 4.
    C.C. Yang, H.Y. Tsai, K.C. Huang, Opt. Rev. 20, 232–235 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Li, D. Chen, R. Zhang, Y. Yu, J. Xu, Y. Wang, Mater. Res. Bull. 48, 1957–1960 (2013)CrossRefGoogle Scholar
  6. 6.
    C.C. Lin, R.S. Liu, J. Phys. Chem. Lett. 11, 1268–1277 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, G. Botty, A.C.A. Delsing, F.J. Disalvo, G. de With, H.T. Hintzen, J. Alloys Compd. 417, 273–279 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, Appl. Mater. Interfaces 6, 252–258 (2014)CrossRefGoogle Scholar
  9. 9.
    Q.Y. Zhang, X.Y. Huang, Prog. Mater. Sci. 55, 353–427 (2010)CrossRefGoogle Scholar
  10. 10.
    P.A. Tanner, Y.Y. Yeung, J. Phys. Chem. A 117, 10726–10735 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Cao, Y. Wang, X. Ma, J. Li, Z. Zhu, Z. You, F. Yang, C. Sun, T. Cao, Y. Ji, C. Tu, J. Alloys Compd. 509, 185–189 (2011)CrossRefGoogle Scholar
  12. 12.
    W.J. Guo, Y.F. Lin, X.H. Gong, Y.J. Chen, Z.D. Luo, Y.D. Huang, Appl. Phys. B 94, 155–163 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Venkateswarlu, M.V.V.K.S. Prasad, K. Swapna, Sk. Mahamuda, A.S. Rao, A.M. Babu, D. Haranath, Ceram. Int. 40, 6261–6269 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Balaji, A. Durairajan, D. Thangaraju, K.K. Rasu, S.M. Babu, Mater. Sci. Eng. B 178, 762–767 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Thirumalai, R. Chandramohan, M.B. Ahamed, S. Ezhilvizhian, T.A. Vijayan, J. Mater. Sci.: Mater. Electron. 23, 325–333 (2012)Google Scholar
  16. 16.
    M.A. Gusowski, H.C. Swart, L.S. Karlsson, M. Trzebiatowska-Gusowska, Nanoscale 4, 541–546 (2012)CrossRefGoogle Scholar
  17. 17.
    J.L. Sommerdijk, A. Bril, A.W. de Jager, J. Lumin. 8, 341–343 (1974)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, V. Jary, G. Ren, M. Nikl, D. Ding, S. Pan, F. Yang, Chem. Phys. Lett. 539–540, 35–38 (2012)CrossRefGoogle Scholar
  19. 19.
    E. Cavalli, F. Angiuli, P. Boutinaud, R. Mahiou, J. Solid State Chem. 185, 136–142 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, New York, 1994)CrossRefGoogle Scholar
  21. 21.
    J. Chen, X. Gong, Y. Lin, Y. Chen, Z. Luo, Y. Huang, J. Alloys Compd. 492, 667–670 (2010)CrossRefGoogle Scholar
  22. 22.
    A.M. Srivastava, C.R. Lecuna, D.S. Perez, F. Rodriguez, R. Valiente, J. Lumin. 146, 27–32 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Balestrieri, M. Gallart, M. Ziegler, P. Bazylewski, G. Ferblantier, G. Schmerber, G.S. Chang, P. Gilliot, D. Muller, A. Slaoui, S. Colis, A. Dinia, J. Phys. Chem. C 118, 13775–13780 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Thirumalai, R. Chandramohan, T.A. Vijayan, Mater. Chem. Phys. 127, 259–264 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Krishnan, J. Thirumalai, S. Thomas, M. Gowri, J. Alloys Compd. 604, 20–30 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Krishnan, J. Thirumalai, New J. Chem. 38, 3480–3491 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, L. Fu, C. Wang, H. Fu, W. Xie, Z. Kristallogr. NCS 229, 191–192 (2014)Google Scholar
  28. 28.
    R. Krishnan, J. Thirumalai, I.B.S. Banu, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 24, 4774–4781 (2013)Google Scholar
  29. 29.
    G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, 1st edn. (Interscience, New York, 1968)Google Scholar
  30. 30.
    C.M. Donega, S. Schenkert, H.F. Folkerts, A. Meijerink, G. Blasse, J. Phys.: Condens. Matter 6, 6043–6056 (1994)Google Scholar
  31. 31.
    A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 11032–11045 (2012)CrossRefGoogle Scholar
  32. 32.
    E. Cavalli, P. Boutinaud, M. Bettinelli, P. Dorenbos, J. Solid State Chem. 181, 1025–1031 (2008)CrossRefGoogle Scholar
  33. 33.
    D. Galanciak, W. Gryk, M. Grinberg, L. Macalik, Opt. Appl. 36, 443–450 (2006)Google Scholar
  34. 34.
    W. Guo, Y. Lin, X. Gong, Y. Chen, Z. Luo, Y. Huang, J. Appl. Phys. 104, 053105-1–053105-8 (2008)Google Scholar
  35. 35.
    X. Yang, Y. Zhou, X. Yu, H.V. Demir, X.W. Sun, J. Mater. Chem. 21, 9009–9013 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, C. Shi, W. Yan, Z. Qi, Y. Fu, Appl. Phys. Lett. 88, 061906-1–061906-3 (2006)Google Scholar
  37. 37.
    Y. Fu, G. Zhang, Z. Qi, W. Wu, C. Shi, J. Lumin. 124, 370–374 (2007)CrossRefGoogle Scholar
  38. 38.
    E. van der Kolk, P. Dorenbos, C.W.E. van Eijk, A.P. Vink, M. Weil, J.P. Chaminade, J. Appl. Phys. 95, 7867–7872 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Kuck, S. Irena, J. Phys, Condens Matter. 18, 5447–5457 (2006)CrossRefGoogle Scholar
  40. 40.
    A. Meijerink, R. Wegh, P. Vergeer, T. Vlugt, Opt. Mater. 28, 575–581 (2006)CrossRefGoogle Scholar
  41. 41.
    Y. Chen, W. Yan, C. Shi, J. Lumin. 122–123, 21–24 (2007)CrossRefGoogle Scholar
  42. 42.
    Z. Xia, D. Chen, J. Am. Ceram. Soc. 93, 1397–1401 (2010)CrossRefGoogle Scholar
  43. 43.
    X. Yang, J. Liu, H. Yang, X. Yu, Y. Guo, Y. Zhou, J. Liu, J. Mater. Chem. 19, 3771–3774 (2009)CrossRefGoogle Scholar
  44. 44.
    J. Wang, X. Jing, C. Yan, J. Lin, F. Liao, J. Lumin. 121, 57–61 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Liu, H. Lian, C. Shi, Opt. Mater. 29, 1591–1594 (2007)CrossRefGoogle Scholar
  46. 46.
    Md.M. Haque, D.-K. Kim, Mater. Lett. 63, 793–796 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Mahlik, M. Behrendt, M. Grinberg, E. Cavalli, M. Bettinelli, J. Phys.: Condens. Matter 25, 105502 (2013)Google Scholar
  48. 48.
    S. Dutta, S. Som, S.K. Sharma, Dalton Trans. 42, 9654–9661 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, L. Wu, M. Ji, B. Wang, Y. Kong, J. Xu, Opt. Mater. Express 2, 92–102 (2012)CrossRefGoogle Scholar
  50. 50.
    P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. 158, R37–R54 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rajagopalan Krishnan
    • 1
    • 2
  • Jagannathan Thirumalai
    • 1
  • Venkatakrishnan Mahalingam
    • 1
  • Srinivas Mantha
    • 3
  1. 1.Department of PhysicsB. S. Abdur Rahman UniversityVandalur, ChennaiIndia
  2. 2.Department of PhysicsRajalakshmi Institute of TechnologyChennaiIndia
  3. 3.Department of ECESASTRA UniversityTirumalaisamudram, ThanjavurIndia

Personalised recommendations