Electric-field induced nonlinear optical materials based on a bipolar copper (I) complex embedded in polymer matrices

  • R. Czerwieniec
  • A. M. El-Naggar
  • A. A. Albassam
  • I. V. Kityk
  • M. Graf
  • H. Yersin


Second order nonlinear optical properties of Cu(dppb)(pz2Bph2), where dppb = 1,2-bis(diphenylphosphino)benzene and pz2Bph2 = diphenyl-bis(pyrazol-1-yl)borate were investigated. In particular, optical second harmonic was generated with different polymer films containing dc-electric field aligned chromophore molecules. It was shown that in such dc-electric field aligned polymer films, the enhancement of the second order output efficiency may be up to 3 times higher with as compared to the non-aligned poly(methylmethacrylate) (PMMA). After switching off the external dc-electric field the second order susceptibility decreases within 5–7 min by about 40 % with respect to the photoinduced ones. After that time, the second harmonic generation efficiency remains constant for much more than a few hours.


PMMA Polymer Matrice Diphenylphosphino Order Susceptibility Chromophore Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project was financially supported by King Saud University, Vice Deanship of research chairs. R. Czerwieniec and H. Yersin gratefully acknowledge the German Ministry of Education and Research (BMBF) for funding.

Compliance with ethical standards

Conflict of interest

No conflict of interest.


  1. 1.
    A. Tokmakovs, M. Rutkis, K. Traskovskis, E. Zarins, L. Laipniece, V. Kokars, V. Kampars, IOP Conf. Ser.: Mater. Sci. Eng. 38, 012034 (2012)CrossRefGoogle Scholar
  2. 2.
    N. Ananthi, U. Balakrishnan, K.B. Manjunath, S. Velmathi, G. Umesh, Opt. Photonics J. 2, 40–45 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Coluccini, G. Terraneo, D. Pasini. J. Chem. vol. 2015, Article ID 827592 (2015)Google Scholar
  4. 4.
    Y. Yang, H. Wang, F. Liu, D. Yang, S. Bo, L. Qiu, Z. Zhen, X. Liu, Phys. Chem. Chem. Phys. 17, 5776–5784 (2015)CrossRefGoogle Scholar
  5. 5.
    M.Y. Song, M.S. Kim, J.Y. Lee, Bull. Korean Chem. Soc. 33(2), 695 (2012)CrossRefGoogle Scholar
  6. 6.
    I.V. Kityk, M. Makowska-Janusik, E. Gondek, L. Krzeminska, A. Danel, K.J. Plucinski, S. Benet, B. Sahraoui, J. Phys.: Condens. Matter. 16(3), 231–239 (2004)Google Scholar
  7. 7.
    A. Migalska-Zalas, Z. Sofiani, B. Sahraoui, I.V. Kityk, V. Yuvshenko, J.-L. Fillaut, J. Perruchon, T.J.J. Muller, J. Phys. Chem. B 108, 14942–14947 (2004)CrossRefGoogle Scholar
  8. 8.
    N. Armaroli, Chem. Soc. Rev. 30, 113–124 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Lavie-Cambot, M. Cantuel, Y. Leydet, G. Jonusauskas, D.M. Bassani, N.D. McClenaghan, Coord. Chem. Rev. 252, 2572–2584 (2008)CrossRefGoogle Scholar
  10. 10.
    R. Czerwieniec, K. Kowalski, H. Yersin, Dalton Trans. 42, 9826–9830 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Czerwieniec, H. Yersin, Inorg. Chem. 54, 4322–4327 (2015)CrossRefGoogle Scholar
  12. 12.
    B.J. Coe, M.C. Chamberlain, J.P. Essex-Lopresti, S. Gaines, J.C. Jeffery, S. Houbrechts, A. Persoons, Inorg. Chem. 36, 3284–3292 (1997)CrossRefGoogle Scholar
  13. 13.
    S. Igawa, M. Hashimoto, I. Kawata, M. Yashima, M. Hoshino, M. Osawa, J. Mater. Chem. C 1, 542–551 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Yersin, U. Monkowius, R. Czerwieniec, J. Yu, Patents WO002010031485A1, DE102008336A1, 2008Google Scholar
  15. 15.
    I.V. Kityk, R.I. Mervinskii, J. Kasperczyk, S. Jossi, Mater. Lett. 27(4–5), 233–237 (1996)CrossRefGoogle Scholar
  16. 16.
    R.I. Mervinskii, I.V. Kityk, M. Makowska-Janusik, J. Straube, M. Matusiewicz & J. Kasperczyk. Opt. Mater. 6(3), 239–244 (1996)Google Scholar
  17. 17.
    M.J. Cho, D.H. Choi, P.A. Sullivan, A.J.P. Akelaitis, L.R. Dalton, Prog. Polym. Sci. 33, 1013 (2008)CrossRefGoogle Scholar
  18. 18.
    L.R. Dalton, P.A. Sullican, H.B. Denise, Chem. Rev. 110, 25 (2010)CrossRefGoogle Scholar
  19. 19.
    Wu Wenbo, Jingui Qin, Zhen Li, Polymer 54, 4351–4382 (2013)CrossRefGoogle Scholar
  20. 20.
    I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski, E. Gondek, J. Ebothe, I. Nzoghe-Mendome, A. Danel, J. Mater. Sci.: Mater. Electron. 18, 519–526 (2007)Google Scholar
  21. 21.
    I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk, J. Mater. Sci.: Mater. Electron. 19, 434–441 (2008)Google Scholar
  22. 22.
    W. Gruhn, Optica applicata. Opt. Appl. 42, 467–472 (2012)Google Scholar
  23. 23.
    I.V. Kityk, J. Kasperczyk, B. Sahraoui, M.F. Yasinskii, B. Holan, Polymers 38(N19), 4803–4806 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Czerwieniec
    • 1
  • A. M. El-Naggar
    • 2
    • 3
  • A. A. Albassam
    • 2
  • I. V. Kityk
    • 4
  • M. Graf
    • 5
  • H. Yersin
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryUniversity RegensburgRegensburgGermany
  2. 2.Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceAin Shams UniversityAbassia, CairoEgypt
  4. 4.Faculty of Electrical EngineeringCzestochowa University TechnologyCzestochowaPoland
  5. 5.Department of ChemistryLudwig Maximilian UniversityMunichGermany

Personalised recommendations