Electro-spinning of cellulose acetate nanofibers: microwave synthesize of calcium ferrite nanoparticles and CA–Ag–CaFe2O4 nanocomposites

  • Davood Ghanbari
  • Masoud Salavati-Niasari
  • Farshad Beshkar
  • Omid Amiri


Calcium ferrite nanoparticles were synthesized by a rapid microwave method and silver nano-flowers were synthesized via a simple chemical reaction without using inert atmosphere at room temperature. Cellulose acetate (CA) nanofibers and their nanocomposites with Ag and CaFe2O4 were prepared by electro-spinning method. Effect of various electric potentials and distance on the morphology and diameter of fibers were investigated. Photocatalytic property of silver in degradation four different azo-dyes as pollutants in water was investigated. CaFe2O4 nanoparticles exhibit a ferrimagnetic behavior at room temperature. Nontoxic nanoparticles appropriately enhanced both thermal stability and flame retardant property of the CA matrix. Also by distribution of CaFe2O4 into CA coercivity was increased.


Silver Nanoparticles Cellulose Acetate Flame Retardant Property Silver Nanostructures Magnetic Refrigeration 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Z. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
  2. 2.
    L. Fan, R. Guo, Cryst. Growth Des. 8, 2150 (2008)CrossRefGoogle Scholar
  3. 3.
    I.S. Chronakis, J. Mater. Proc. Technol. 167, 283 (2005)CrossRefGoogle Scholar
  4. 4.
    N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28, 325 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, N. Guan, J. Phys. Chem. C 113, 16002 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Ghanbari, M. Salavati-Niasari, M. Sabet, Compos. Part B Eng. 45, 550 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Nabiyouni, D. Ghanbari, J. Appl. Polym. Sci. 125, 3268 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, J. Ind. Eng. Chem. 20, 3970 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Liu, J. Ying, X. Zhou, X. Xie, Mater. Lett. 63, 911 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Kuljanin, M.I. Comor, V. Djokovic, J.M. Nedeljkovic, Mater. Chem. Phys. 95, 67 (2006)CrossRefGoogle Scholar
  12. 12.
    D. Ghanbari, M. Salavati-Niasari, M. Sabet, J. Clust. Sci. 23, 1081 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, J. Clust. Sci. 25, 397 (2014)CrossRefGoogle Scholar
  14. 14.
    B.Y. Geng, J.Z. Ma, J.H. You, J. Cryst. Growth Des. 8, 1443 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Jia, L. Gao, J. Phys. Chem. C 112, 666 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Laoutid, L. Bonnaud, M. Alexandre, J. Lopez-Cuesta, Ph Dubois, Mater. Sci. Eng. Rep. 63, 100 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Gholamian, M. Salavati-Niasari, D. Ghanbari, M. Sabet, J. Clust. Sci. 24, 73 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Jamshidi, D. Ghanbari, M. Salavati-Niasari, J. Ind. Eng. Chem. 20, 3507 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Davood Ghanbari
    • 1
  • Masoud Salavati-Niasari
    • 1
  • Farshad Beshkar
    • 1
  • Omid Amiri
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanI. R. Iran

Personalised recommendations