Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods

  • D. S. Saidina
  • A. Norshamira
  • M. Mariatti


In this study, calcium copper titanate, CaCu3Ti4O12 (CCTO) was used as filler in epoxy composite using different mixing and fabrication methods to investigate their suitability as dielectric materials for embedded capacitor. Results show that 20 vol% CCTO/epoxy composite produced using ultrasonic mixing method yield slightly higher dielectric constant, T 5% and T onset as compared to 20 vol% CCTO/epoxy composite produced using agate mortar method. Meanwhile, sample with 20 vol% CCTO/epoxy composite fabricated using spin coating method shows slightly higher dielectric constant, T 5%, T onset and E′, and lower CTE value compared to 20 vol% CCTO/epoxy composite fabricated using hot press method. Nevertheless, 40 vol% CCTO/epoxy composite fabricated using hot press method shows the highest dielectric constant, T 5%, T onset and E′, and lowest CTE value compared to all composites. In short, composite produced using ultrasonic as mixing method and spin coating as fabrication method are suitable to be utilized to produce epoxy composite as dielectric materials for embedded capacitor applications.


High Dielectric Constant Epoxy Matrix Fabrication Method Epoxy Composite Filler Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of the Universiti Sains Malaysia and the Ministry of Education, and Explorating Research Grant Scheme (ERGS) for granting the research fund used for this project (Project No. 6730109).


  1. 1.
    S.M. Wu, E. Jahja, W.K. Yen, J.W. Wang, in Proceedings of the Electronic Packaging Technology Conference, pp. 125–129 (2007)Google Scholar
  2. 2.
    Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, J. Appl. Polym. Sci. 83, 1084–1090 (2002)CrossRefGoogle Scholar
  3. 3.
    J.R. Yoon, J.W. Han, K.M. Lee, Trans. Electr. Electron. Mater. 10, 116–120 (2009)CrossRefGoogle Scholar
  4. 4.
    M.A. Alam, M.H. Azarian, M. Osterman, M. Pecht, Microelectron. Reliabil. 51, 946–952 (2011)CrossRefGoogle Scholar
  5. 5.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  6. 6.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)CrossRefGoogle Scholar
  7. 7.
    R. Voo, M. Mariatti, L.C. Sim, Polym. Adv. Technol. 23, 1620–1627 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Seema, K.R. Dayas, J.M. Varghese, J. Appl. Polym. Sci. 106, 146–151 (2007)CrossRefGoogle Scholar
  9. 9.
    J.C. Li, D.C. Ba, Y.L. Song, in Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, ed. by S. Zhang (CRC Press, NY, 2010), pp. 189–201Google Scholar
  10. 10.
    G. Nan, Buletinul Universiti Petrol. 8(2), 99–102 (2006)Google Scholar
  11. 11.
    X. He, in Methodological Advances in the Culture, Manipulation and Utilization of Embryonic Stem Cells for Basic and Practical Applications, ed. by C. Atwood (InTech, 2011), pp. 113–138Google Scholar
  12. 12.
    J.M. Julie, D.H. Sabar, A. Fadzil, D. Karim, A.A. Zainal, Mater. Lett. 61, 1835–1838 (2007)CrossRefGoogle Scholar
  13. 13.
    A.R. Fariz, D.H. Sabar, A.A. Zainal, A. Fadzil, J.M. Julie, J. Mater. Sci.: Mater. Electron. 26, 3947–3956 (2015)Google Scholar
  14. 14.
    L. Zheng, D. Zheng, H. Xin, W. Li, M. Zhu, H. Feng, W. Sun, IEEE Trans. Mag. 50, 1–4 (2014)CrossRefGoogle Scholar
  15. 15.
    N.G. Devaraju, E.S. Kim, B.I. Lee, Microelectron. Eng. 82(1), 71 (2005)CrossRefGoogle Scholar
  16. 16.
    L.A. Ramajo, M.A. Ramírez, P.R. Bueno, Mater. Res. 11(1), 85–88 (2008)CrossRefGoogle Scholar
  17. 17.
    S.H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei, Z.K. Xu, Polym. Test. 23, 797–801 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Leszczynska, J. Njuguna, K. Pielichowski, J.R. Banerjee, Thermochim. Acta 454, 75–96 (2007)CrossRefGoogle Scholar
  19. 19.
    P. Thomas, R.S.E. Ravindran, K.B.R. Varma, J. Therm. Anal. Calorim. 115, 1311–1319 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Shriprakash, K.B.R. Varma, Compos. Sci. Technol. 67, 2363–2368 (2007)CrossRefGoogle Scholar
  21. 21.
    E. Tuncer, I. Sauers, D.R. James, R. Alvin, M. Ellis, P. Paranthaman, A.T. Tolga, S. Sathyamurthy, L.M. Karren, J. Li, A. Goyal, Nanotechnology 18, 25703–25706 (2007)CrossRefGoogle Scholar
  22. 22.
    F. Amaral, C.P.L. Rubinger, F. Henry, L.C. Costa, M.A. Valente, A.B. Timmons, J. Non-Cryst. Solids 354, 5321–5322 (2008)CrossRefGoogle Scholar
  23. 23.
    L.Q. Ibrhium, M.M. Ismail, B.M. Aldabbagh, J. Appl. Phys. 5, 49–54 (2013)Google Scholar
  24. 24.
    J.M. Park, D.S. Kim, J.R. Lee, T.W. Kim, J. Mater. Sci. Eng.: C 23, 971–975 (2003)CrossRefGoogle Scholar
  25. 25.
    N. Chisholm, H. Mahfuz, V.K. Rangari, A. Ashfaq, S. Jeelani, Compos. Struct. 67, 115–124 (2004)CrossRefGoogle Scholar
  26. 26.
    G. Suriati, M. Mariatti, A. Azizan, Mold. J. Phys. Sci. 11, 94–105 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations