Skip to main content
Log in

Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, calcium copper titanate, CaCu3Ti4O12 (CCTO) was used as filler in epoxy composite using different mixing and fabrication methods to investigate their suitability as dielectric materials for embedded capacitor. Results show that 20 vol% CCTO/epoxy composite produced using ultrasonic mixing method yield slightly higher dielectric constant, T 5% and T onset as compared to 20 vol% CCTO/epoxy composite produced using agate mortar method. Meanwhile, sample with 20 vol% CCTO/epoxy composite fabricated using spin coating method shows slightly higher dielectric constant, T 5%, T onset and E′, and lower CTE value compared to 20 vol% CCTO/epoxy composite fabricated using hot press method. Nevertheless, 40 vol% CCTO/epoxy composite fabricated using hot press method shows the highest dielectric constant, T 5%, T onset and E′, and lowest CTE value compared to all composites. In short, composite produced using ultrasonic as mixing method and spin coating as fabrication method are suitable to be utilized to produce epoxy composite as dielectric materials for embedded capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Wu, E. Jahja, W.K. Yen, J.W. Wang, in Proceedings of the Electronic Packaging Technology Conference, pp. 125–129 (2007)

  2. Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, J. Appl. Polym. Sci. 83, 1084–1090 (2002)

    Article  Google Scholar 

  3. J.R. Yoon, J.W. Han, K.M. Lee, Trans. Electr. Electron. Mater. 10, 116–120 (2009)

    Article  Google Scholar 

  4. M.A. Alam, M.H. Azarian, M. Osterman, M. Pecht, Microelectron. Reliabil. 51, 946–952 (2011)

    Article  Google Scholar 

  5. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  6. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)

    Article  Google Scholar 

  7. R. Voo, M. Mariatti, L.C. Sim, Polym. Adv. Technol. 23, 1620–1627 (2012)

    Article  Google Scholar 

  8. A. Seema, K.R. Dayas, J.M. Varghese, J. Appl. Polym. Sci. 106, 146–151 (2007)

    Article  Google Scholar 

  9. J.C. Li, D.C. Ba, Y.L. Song, in Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, ed. by S. Zhang (CRC Press, NY, 2010), pp. 189–201

  10. G. Nan, Buletinul Universiti Petrol. 8(2), 99–102 (2006)

    Google Scholar 

  11. X. He, in Methodological Advances in the Culture, Manipulation and Utilization of Embryonic Stem Cells for Basic and Practical Applications, ed. by C. Atwood (InTech, 2011), pp. 113–138

  12. J.M. Julie, D.H. Sabar, A. Fadzil, D. Karim, A.A. Zainal, Mater. Lett. 61, 1835–1838 (2007)

    Article  Google Scholar 

  13. A.R. Fariz, D.H. Sabar, A.A. Zainal, A. Fadzil, J.M. Julie, J. Mater. Sci.: Mater. Electron. 26, 3947–3956 (2015)

    Google Scholar 

  14. L. Zheng, D. Zheng, H. Xin, W. Li, M. Zhu, H. Feng, W. Sun, IEEE Trans. Mag. 50, 1–4 (2014)

    Article  Google Scholar 

  15. N.G. Devaraju, E.S. Kim, B.I. Lee, Microelectron. Eng. 82(1), 71 (2005)

    Article  Google Scholar 

  16. L.A. Ramajo, M.A. Ramírez, P.R. Bueno, Mater. Res. 11(1), 85–88 (2008)

    Article  Google Scholar 

  17. S.H. Xie, B.K. Zhu, J.B. Li, X.Z. Wei, Z.K. Xu, Polym. Test. 23, 797–801 (2004)

    Article  Google Scholar 

  18. A. Leszczynska, J. Njuguna, K. Pielichowski, J.R. Banerjee, Thermochim. Acta 454, 75–96 (2007)

    Article  Google Scholar 

  19. P. Thomas, R.S.E. Ravindran, K.B.R. Varma, J. Therm. Anal. Calorim. 115, 1311–1319 (2013)

    Article  Google Scholar 

  20. B. Shriprakash, K.B.R. Varma, Compos. Sci. Technol. 67, 2363–2368 (2007)

    Article  Google Scholar 

  21. E. Tuncer, I. Sauers, D.R. James, R. Alvin, M. Ellis, P. Paranthaman, A.T. Tolga, S. Sathyamurthy, L.M. Karren, J. Li, A. Goyal, Nanotechnology 18, 25703–25706 (2007)

    Article  Google Scholar 

  22. F. Amaral, C.P.L. Rubinger, F. Henry, L.C. Costa, M.A. Valente, A.B. Timmons, J. Non-Cryst. Solids 354, 5321–5322 (2008)

    Article  Google Scholar 

  23. L.Q. Ibrhium, M.M. Ismail, B.M. Aldabbagh, J. Appl. Phys. 5, 49–54 (2013)

    Google Scholar 

  24. J.M. Park, D.S. Kim, J.R. Lee, T.W. Kim, J. Mater. Sci. Eng.: C 23, 971–975 (2003)

    Article  Google Scholar 

  25. N. Chisholm, H. Mahfuz, V.K. Rangari, A. Ashfaq, S. Jeelani, Compos. Struct. 67, 115–124 (2004)

    Article  Google Scholar 

  26. G. Suriati, M. Mariatti, A. Azizan, Mold. J. Phys. Sci. 11, 94–105 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Universiti Sains Malaysia and the Ministry of Education, and Explorating Research Grant Scheme (ERGS) for granting the research fund used for this project (Project No. 6730109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidina, D.S., Norshamira, A. & Mariatti, M. Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods. J Mater Sci: Mater Electron 26, 8118–8129 (2015). https://doi.org/10.1007/s10854-015-3471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3471-8

Keywords

Navigation