Temperature dependent electrical conductivity and microwave absorption properties of composites based on multi-wall carbon nanotubes and phthalocyanine polymer



Phthalocyanine (Pc) polymer composites containing multi-walled carbon nanotubes (MWCNTs) were successfully prepared via thermal annealing and their microwave absorption properties were tuned by changing the annealing temperatures from 300 to 500 °C. The effects of the introduction of MWCNTs into Pc polymer matrices and elevated annealing temperature on the electrical conductivity and the permittivity of the composites have been investigated. The results indicated that the synergistic effect of electrical conductivity and the permittivity endowed the composites with excellent microwave absorbing properties. Particularly, the reflection loss peak achieved a minimum value of −59.50 dB at 11.84 GHz when the sample with a thickness of 2.36 mm was annealed at 450 °C. The tuning of electromagnetic parameters of polymer composites by changing annealing temperature provided a simple and effective technical direction for the design of microwave attenuation materials.


Dielectric Loss Phthalocyanine Polymer Composite Microwave Absorption Reflection Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank for financial support of this work from the National Natural Science Foundation (Nos. 51173021, 51373028, 51403029) and “863” National Major Program of High Technology (2012AA03A212).


  1. 1.
    S.B. Sastri, T.M. Keller, J. Polym, Sci: Part A Polym. Chem. 36, 1885 (1998)Google Scholar
  2. 2.
    T.M. Keller, D.D. Dominguez, Polymer 46, 4614 (2005)CrossRefGoogle Scholar
  3. 3.
    T.M. Keller, Polymer 34, 952 (1993)CrossRefGoogle Scholar
  4. 4.
    S.B. Sastri, J.P. Armistead, T.M. Keller, Polym. Compos. 17, 816 (1996)CrossRefGoogle Scholar
  5. 5.
    S.B. Sastri, T.M. Keller, J. Polym. Sci., Part A: Polym. Chem. 37, 2105 (1999)CrossRefGoogle Scholar
  6. 6.
    G.P. Cao, W.J. Chen, X.B. Liu, Polym. Degrad. Stab. 93, 739 (2008)CrossRefGoogle Scholar
  7. 7.
    F.B. Meng, R. Zhao, Y.Q. Zhan, Y.J. Lei, J.C. Zhong, X.B. Liu, Mater. Lett. 65, 264 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Jia, R. Zhao, J.C. Zhong, X.B. Liu, Chem. Mater. Sci. 21, 708 (2011)Google Scholar
  9. 9.
    Y.J. Lei, G.H. Hu, R. Zhao, H. Guo, X. Zhao, X.B. Liu, J. Phys. Chem. Solid 73, 1335 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.C. Wang, X.L. Yang, J.J. Wei, M.Z. Xu, L.F. Tong, R. Zhao, X.B. Liu, J. Polym. Res. 19, 9969 (2012)CrossRefGoogle Scholar
  11. 11.
    Z.C. Wang, X.L. Yang, M.Z. Xu, J.J. Wei, X.B. Liu, J. Mater. Sci.: Mater. Electron. 24, 2610 (2013)Google Scholar
  12. 12.
    M.S. Cao, R.R. Qin, C. Qiu, J. Zhu, Mater. Des. 24, 391 (2003)CrossRefGoogle Scholar
  13. 13.
    M.S. Cao, J. Yuan, H.T. Liu, X.Y. Fang, J. Zhu Mater. Des. 24, 31 (2003)CrossRefGoogle Scholar
  14. 14.
    C.S. Dong, X. Wang, P.H. Zhou, T. Liu, J.L. Xie, L.J. Deng, J. Magn. Magn. Mater. 354, 340 (2014)CrossRefGoogle Scholar
  15. 15.
    T.M. Keller, J. Polym, Sci: Part A Polym. Chem. 26, 3199 (1988)Google Scholar
  16. 16.
    X.L. Yang, Y.J. Lei, J.C. Zhong, R. Zhao, X.B. Liu, J. Appl. Polym. Sci. 119, 882 (2011)CrossRefGoogle Scholar
  17. 17.
    A.W. Snow, J.R. Griffith, N.P. Marullo, Macromolecules 17, 1614 (1984)CrossRefGoogle Scholar
  18. 18.
    T.M. Keller, Polym. Chem. 25, 2569 (1987)CrossRefGoogle Scholar
  19. 19.
    M.M. Lu, J. Yuan, B. Wen, J. Liu, W.Q. Cao, M.S. Cao, Chin. Phys. B 22, 037701 (2013)CrossRefGoogle Scholar
  20. 20.
    B.D. Chin, Y.S. Lee, O.O. Park, J. Coll. Interface Sci. 201, 172 (1998)CrossRefGoogle Scholar
  21. 21.
    Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Carbon 48, 4074 (2010)CrossRefGoogle Scholar
  22. 22.
    S.E. San, Y. Yerli, M. Okutan, F. Yilmaz, O. Gunaydin, Y. Hames, Mater. Sci. Eng., B 138, 284 (2007)CrossRefGoogle Scholar
  23. 23.
    A.N. Lagarkov, A.K. Saruchev, Phys. Rev. B. 53, 6318 (1996)CrossRefGoogle Scholar
  24. 24.
    Y.H. Wu, M.G. Han, Z.K. Tang, L.J. Deng, J. Appl. Phys. 115, 163902 (2014)CrossRefGoogle Scholar
  25. 25.
    D.D.L. Chung, Carbon 39, 279 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Ramo, J.R. Whinnery, T.V. Duzer, Fields and waves in communication electronics (Wiley, New York, 1984)Google Scholar
  27. 27.
    Y.J. Lei, R. Zhao, G.H. Hu, X.L. Yang, X.B. Liu, J. Mater. Sci. 47, 4473 (2012)CrossRefGoogle Scholar
  28. 28.
    P.K. Mandal, A. Lapanik, R. Wipf, B. Stuehn, W. Haase, Appl. Phys. Lett. 100, 072112 (2012)CrossRefGoogle Scholar
  29. 29.
    J.K. Nelson, J.C. Fothergill, Nanotechnology 15, 586 (2004)CrossRefGoogle Scholar
  30. 30.
    X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, Mater. Lett. 124, 126 (2014)CrossRefGoogle Scholar
  31. 31.
    X.G. Huang, Y.Y. Chen, J.H. Yu, J. Zhang, T.Y. Sang, G.X. Tao, H.L. Zhu, J. Mater. Sci: Mater. Elect. 26, 3474 (2015)Google Scholar
  32. 32.
    X.L. Shi, M.S. Cao, J. Yuan, Q.L. Zhao, Y.Q. Kang, X.Y. Fang, Y.J. Chen, Appl. Phys. Lett. 93, 183118 (2008)CrossRefGoogle Scholar
  33. 33.
    X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, J. Am. Ceram. Soc. 97, 1363 (2014)CrossRefGoogle Scholar
  34. 34.
    Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Lin, H.J. Gao, Y.S. Chen, J. Phys. Chem. C 111, 13696 (2007)CrossRefGoogle Scholar
  35. 35.
    X.G. Huang, J. Zhang, M. Lai, T.Y. Sang, J. Alloy. Comp. 627, 367 (2015)CrossRefGoogle Scholar
  36. 36.
    L.B. Zhang, P.H. Zhou, H.B. Zhang, L.J. Lu, G.R. Zhang, H.Y. Chen, H.P. Lu, J.L. Xie, L.J. Deng, IEEE Trans. Magn. 50, 1 (2014)Google Scholar
  37. 37.
    T.H. Ting, Y.N. Jau, R.P. Yu, Appl. Surf. Sci. 258, 3184 (2012)CrossRefGoogle Scholar
  38. 38.
    Z.J. Song, J.L. Xie, P.H. Zhou, X. Wang, T. Liu, L.J. Deng, J. Alloy. Comp. 551, 677 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Branch of Advanced Functional Materials, School of Microelectronic and Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations