Skip to main content
Log in

Temperature dependent electrical conductivity and microwave absorption properties of composites based on multi-wall carbon nanotubes and phthalocyanine polymer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phthalocyanine (Pc) polymer composites containing multi-walled carbon nanotubes (MWCNTs) were successfully prepared via thermal annealing and their microwave absorption properties were tuned by changing the annealing temperatures from 300 to 500 °C. The effects of the introduction of MWCNTs into Pc polymer matrices and elevated annealing temperature on the electrical conductivity and the permittivity of the composites have been investigated. The results indicated that the synergistic effect of electrical conductivity and the permittivity endowed the composites with excellent microwave absorbing properties. Particularly, the reflection loss peak achieved a minimum value of −59.50 dB at 11.84 GHz when the sample with a thickness of 2.36 mm was annealed at 450 °C. The tuning of electromagnetic parameters of polymer composites by changing annealing temperature provided a simple and effective technical direction for the design of microwave attenuation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Sastri, T.M. Keller, J. Polym, Sci: Part A Polym. Chem. 36, 1885 (1998)

    Google Scholar 

  2. T.M. Keller, D.D. Dominguez, Polymer 46, 4614 (2005)

    Article  Google Scholar 

  3. T.M. Keller, Polymer 34, 952 (1993)

    Article  Google Scholar 

  4. S.B. Sastri, J.P. Armistead, T.M. Keller, Polym. Compos. 17, 816 (1996)

    Article  Google Scholar 

  5. S.B. Sastri, T.M. Keller, J. Polym. Sci., Part A: Polym. Chem. 37, 2105 (1999)

    Article  Google Scholar 

  6. G.P. Cao, W.J. Chen, X.B. Liu, Polym. Degrad. Stab. 93, 739 (2008)

    Article  Google Scholar 

  7. F.B. Meng, R. Zhao, Y.Q. Zhan, Y.J. Lei, J.C. Zhong, X.B. Liu, Mater. Lett. 65, 264 (2011)

    Article  Google Scholar 

  8. K. Jia, R. Zhao, J.C. Zhong, X.B. Liu, Chem. Mater. Sci. 21, 708 (2011)

    Google Scholar 

  9. Y.J. Lei, G.H. Hu, R. Zhao, H. Guo, X. Zhao, X.B. Liu, J. Phys. Chem. Solid 73, 1335 (2012)

    Article  Google Scholar 

  10. Z.C. Wang, X.L. Yang, J.J. Wei, M.Z. Xu, L.F. Tong, R. Zhao, X.B. Liu, J. Polym. Res. 19, 9969 (2012)

    Article  Google Scholar 

  11. Z.C. Wang, X.L. Yang, M.Z. Xu, J.J. Wei, X.B. Liu, J. Mater. Sci.: Mater. Electron. 24, 2610 (2013)

    Google Scholar 

  12. M.S. Cao, R.R. Qin, C. Qiu, J. Zhu, Mater. Des. 24, 391 (2003)

    Article  Google Scholar 

  13. M.S. Cao, J. Yuan, H.T. Liu, X.Y. Fang, J. Zhu Mater. Des. 24, 31 (2003)

    Article  Google Scholar 

  14. C.S. Dong, X. Wang, P.H. Zhou, T. Liu, J.L. Xie, L.J. Deng, J. Magn. Magn. Mater. 354, 340 (2014)

    Article  Google Scholar 

  15. T.M. Keller, J. Polym, Sci: Part A Polym. Chem. 26, 3199 (1988)

    Google Scholar 

  16. X.L. Yang, Y.J. Lei, J.C. Zhong, R. Zhao, X.B. Liu, J. Appl. Polym. Sci. 119, 882 (2011)

    Article  Google Scholar 

  17. A.W. Snow, J.R. Griffith, N.P. Marullo, Macromolecules 17, 1614 (1984)

    Article  Google Scholar 

  18. T.M. Keller, Polym. Chem. 25, 2569 (1987)

    Article  Google Scholar 

  19. M.M. Lu, J. Yuan, B. Wen, J. Liu, W.Q. Cao, M.S. Cao, Chin. Phys. B 22, 037701 (2013)

    Article  Google Scholar 

  20. B.D. Chin, Y.S. Lee, O.O. Park, J. Coll. Interface Sci. 201, 172 (1998)

    Article  Google Scholar 

  21. Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Carbon 48, 4074 (2010)

    Article  Google Scholar 

  22. S.E. San, Y. Yerli, M. Okutan, F. Yilmaz, O. Gunaydin, Y. Hames, Mater. Sci. Eng., B 138, 284 (2007)

    Article  Google Scholar 

  23. A.N. Lagarkov, A.K. Saruchev, Phys. Rev. B. 53, 6318 (1996)

    Article  Google Scholar 

  24. Y.H. Wu, M.G. Han, Z.K. Tang, L.J. Deng, J. Appl. Phys. 115, 163902 (2014)

    Article  Google Scholar 

  25. D.D.L. Chung, Carbon 39, 279 (2001)

    Article  Google Scholar 

  26. S. Ramo, J.R. Whinnery, T.V. Duzer, Fields and waves in communication electronics (Wiley, New York, 1984)

    Google Scholar 

  27. Y.J. Lei, R. Zhao, G.H. Hu, X.L. Yang, X.B. Liu, J. Mater. Sci. 47, 4473 (2012)

    Article  Google Scholar 

  28. P.K. Mandal, A. Lapanik, R. Wipf, B. Stuehn, W. Haase, Appl. Phys. Lett. 100, 072112 (2012)

    Article  Google Scholar 

  29. J.K. Nelson, J.C. Fothergill, Nanotechnology 15, 586 (2004)

    Article  Google Scholar 

  30. X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, Mater. Lett. 124, 126 (2014)

    Article  Google Scholar 

  31. X.G. Huang, Y.Y. Chen, J.H. Yu, J. Zhang, T.Y. Sang, G.X. Tao, H.L. Zhu, J. Mater. Sci: Mater. Elect. 26, 3474 (2015)

    Google Scholar 

  32. X.L. Shi, M.S. Cao, J. Yuan, Q.L. Zhao, Y.Q. Kang, X.Y. Fang, Y.J. Chen, Appl. Phys. Lett. 93, 183118 (2008)

    Article  Google Scholar 

  33. X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, J. Am. Ceram. Soc. 97, 1363 (2014)

    Article  Google Scholar 

  34. Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Lin, H.J. Gao, Y.S. Chen, J. Phys. Chem. C 111, 13696 (2007)

    Article  Google Scholar 

  35. X.G. Huang, J. Zhang, M. Lai, T.Y. Sang, J. Alloy. Comp. 627, 367 (2015)

    Article  Google Scholar 

  36. L.B. Zhang, P.H. Zhou, H.B. Zhang, L.J. Lu, G.R. Zhang, H.Y. Chen, H.P. Lu, J.L. Xie, L.J. Deng, IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  37. T.H. Ting, Y.N. Jau, R.P. Yu, Appl. Surf. Sci. 258, 3184 (2012)

    Article  Google Scholar 

  38. Z.J. Song, J.L. Xie, P.H. Zhou, X. Wang, T. Liu, L.J. Deng, J. Alloy. Comp. 551, 677 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for financial support of this work from the National Natural Science Foundation (Nos. 51173021, 51373028, 51403029) and “863” National Major Program of High Technology (2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Jia or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jia, K. & Liu, X. Temperature dependent electrical conductivity and microwave absorption properties of composites based on multi-wall carbon nanotubes and phthalocyanine polymer. J Mater Sci: Mater Electron 26, 8008–8016 (2015). https://doi.org/10.1007/s10854-015-3455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3455-8

Keywords

Navigation