Advertisement

Thickness effects on optical and photoelectric properties of PbSeTeO quaternary thin films prepared by magnetron sputtering

  • Xigui Sun
  • Kewei Gao
  • Xiaolu Pang
  • Huisheng Yang
  • Alex A. Volinsky
Article

Abstract

PbSeTeO quaternary thin films with different thickness were grown on Si(100) substrates by magnetron sputtering. The as-prepared thin films show face centered cubic crystal structure and the main diffraction peak varied from PbSe(220) to PbSe(200) with the film thickness due to the transition between the surface energy and the strain energy contributions to the growth mechanism. A red shift of the absorption edge from 2200 cm−1 (4.55 μm) to 1400 cm−1 (7.14 μm) with the film thickness was obtained, indicating that increasing the thickness is an effective method to expand the absorption range of the sputtered PbSeTeO quaternary thin films. The photoelectric sensitivity increased almost linearly with the film thickness. This is attributed to the decrease of the density of states (DOS) near the top of the valence band, the increase of DOS near the conduction band bottom and the narrowing of the optical band gap calculated by the generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange correlation functional formalism.

Keywords

PbSe TeO2 SeO2 Physical Property Measurement System Photoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (51271022), the Fok Ying Tung Education Foundation (132001) and the Fundamental Research Funds for the Central Universities (FRF-TP-14-008A2). Alex Volinsky acknowledges support from the National Science Foundation under the IRES 1358088 Grant.

References

  1. 1.
    J.M. Martin, J.L. Hernández, L. Adell, A. Rodriguez, F. López, Arrays of thermally evaporated PbSe infrared photodetectors deposited on Si substrates operating at room temperature. Semicond. Sci. Technol. 11, 1740–1744 (1996)CrossRefGoogle Scholar
  2. 2.
    H. Preier, Recent advances in lead-chalcognide diode lasers. Appl. Phys. 20, 189–206 (1979)CrossRefGoogle Scholar
  3. 3.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRefGoogle Scholar
  4. 4.
    J.J. Choi, Y.F. Lim, M.B. Santiago-Berrios, M. Oh, B.R. Hyun, L.F. Sun, A.C. Bartnik, A. Goedhart, G.G. Malliaras, H.D. Abruña, F.W. Wise, T. Hanrath, PbSe nanocrystal excitonic solar cells. Nano Lett. 9, 3749–3755 (2009)CrossRefGoogle Scholar
  5. 5.
    E.A. Albanesi, E.L.P.Y. Blanca, A.G. Petukhov, Calculated optical spectra of IV–VI semiconductors PbS, PbSe and PbTe. Comput. Mater. Sci. 32, 85–95 (2005)CrossRefGoogle Scholar
  6. 6.
    Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconductoring Lead Chalcogenides (Springer Science + Business Media, New York, 1970)CrossRefGoogle Scholar
  7. 7.
    K.C. Preetha, T.L. Remadevi, Band gap engineering in PbSe thin films from near-infrared to visible region by photochemical deposition method. J. Mater. Sci. Mater. Electron. 25, 1783–1791 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Basu, S. Bhattacharya, R.R. Bhatt, A. Singh, D.K. Aswal, S.K. Gupta, Improved thermoelectric properties of Se-doped n-type PbTe1−xSex (0 ≤ x ≤ 1). J. Electron. Mater. 42, 2292–2296 (2013)CrossRefGoogle Scholar
  9. 9.
    A.J. Strauss, T.C. Harman, Pseudobinary phase diagram and existence regions for PbS1−xSex. J. Electron. Mater. 2, 71–85 (1973)CrossRefGoogle Scholar
  10. 10.
    H. Zogg, A. Fach, J. John, J. Masek, P. Muller, C. Paglino, W. Buttler, Pb1−xSnxSe-on Si LWIR sensor arrays and thermal imaging with JFET/CMOS read-out. J. Electron. Mater. 25, 1366–1370 (1996)CrossRefGoogle Scholar
  11. 11.
    M.I. Baleva, M.H. Maksimov, S.M. Metev, M.S. Sendova, Laser-assisted sputtering of Pb1−xCdxSe films. J. Mater. Sci. Lett. 5, 533–536 (1986)CrossRefGoogle Scholar
  12. 12.
    W.Z. Shen, Observation of exciton localization in PbSrSe thin films grown by molecular beam epitaxy. Appl. Phys. A 80, 389–394 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Kumar, M. Hussain, T.P. Sharma, M. Husain, Characterization of PbSe1−xTex thin films. J. Phys. Chem. Solids 64, 367–376 (2003)CrossRefGoogle Scholar
  14. 14.
    G. Naeemullah, R. Murtaza, N. Khenata, S. Hassan, M.N. Naeem, S.B. Khalid, Omran. Structural and optoelectronic properties of PbSxSe1−x, PbSxTe1−x and PbSexTe1−x via first-principles calculations. Comput. Mater. Sci. 83, 496–503 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Zhao, S. Mukherjee, J. Ma, D. Li, S.L. Elizondo, Z. Shi, Influence of oxygen passivation on optical properties of PbSe thin films. Appl. Phys. Lett. 92, 1–3 (2008)Google Scholar
  16. 16.
    C. Gautier, M.C. Muller, M. Averous, Study of PbSe layer oxidation and oxide dissolution. Appl. Surf. Sci. 141, 157–163 (1999)CrossRefGoogle Scholar
  17. 17.
    H. Jung, R. Kuljic, M.A. Stroscio, M. Dutta, Confinement in PbSe wires grown by rf magnetron sputtering. Appl. Phys. Lett. 96, 153106 (2010)CrossRefGoogle Scholar
  18. 18.
    I. Grozdanov, M. Najdoski, S.K. Dey, A simple solution growth technique for PbSe thin films. Mater. Lett. 38, 28–32 (1999)CrossRefGoogle Scholar
  19. 19.
    N. Mukherjee, A. Mondal, Comparative study on the properties of galvanically deposited nano- and microcrystalline thin films of PbSe. J. Electron. Mater. 39, 1177–1185 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Gad, M.A. Rafea, Y. Badr, Optical and photoconductive properties of Pb0.9Sn0.1Se nano-structured thin films deposited by thermal vacuum evaporation and pulsed laser deposition. J. Alloys Compd. 515, 101–107 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Li, J. Ma, S. Mukherjee, G. Bi, F. Zhao, S.L. Elizondo, Z. Shi, A new in-situ surface treatment during MBE-grown PbSe on CaF2/Si(111) heterostructure. J. Cryst. Growth 311, 3395–3398 (2009)CrossRefGoogle Scholar
  22. 22.
    P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)CrossRefGoogle Scholar
  23. 23.
    A. Jdanov, J. Pelleg, Z. Dashevsky, R. Shneck, Growth and characterization of PbTe films by magnetron sputtering. Mater. Sci. Eng. B 106, 89–94 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Lach-hab, D.A. Papaconstantopoulos, M.J. Mehl, Electronic structure calculations of lead chalcogenides PbS, PbSe, PbTe. J. Phys. Chem. Solids 63, 833–841 (2002)CrossRefGoogle Scholar
  25. 25.
    W.R. Feng, H. Zhou, F. Chen, Impact of thickness on crystal structure and optical properties for thermally evaporated PbSe thin films. Vacuum 114, 82–85 (2015)CrossRefGoogle Scholar
  26. 26.
    M.S. Raven, ESCA interface study of ion-plated and thermally evaporated selenium films. J. Phys. D Appl. Phys. 11, 631–642 (1978)CrossRefGoogle Scholar
  27. 27.
    V. Consonni, G. Rey, H. Roussel, D. Bellet, Thickness effects on the texture development of fluorine-doped SnO2 thin films: the role of surface and strain energy. J. Appl. Phys. 111, 033523–033523-7 (2012)CrossRefGoogle Scholar
  28. 28.
    X.J. Wang, Y.B. Hou, Y. Chang, C.R. Becker, R.F. Klie, R. Kodama, F. Aqariden, S. Sivananthan, Growth of PbSe on ZnTe/GaAs(211)B by molecular beam epitaxy. J. Cryst. Growth 312, 910–913 (2010)CrossRefGoogle Scholar
  29. 29.
    J.E. Petersen, L.M. Scolfaro, T.H. Myers, Elastic and mechanical properties of intrinsic and doped PbSe and PbTe studied by first-principles. Mater. Chem. Phys. 146, 472–477 (2014)CrossRefGoogle Scholar
  30. 30.
    W.R. Feng, X.Y. Wang, F. Chen, W. Liu, H. Zhou, S. Wang, H.R. Li, Influence of substrate temperature on structural, morphological and electrical properties of PbSe film deposited by radio frequency sputtering. Thin Solid Films 578, 25–30 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Thanikaikarasan, T. Mahalingam, V. Dhanasekaran, A. Kathalingam, J.K. Rhee, Growth and characterization of lead selenide thin films. J. Mater. Sci. Mater. Electron. 23, 1562–1568 (2012)CrossRefGoogle Scholar
  32. 32.
    M.M. Parvathi, V. Arivazhagan, S. Rajesh, Structural and optical properties of ZnSe thin films stacked with PbSe submonolayers. Appl. Phys. A 116, 1773–1778 (2014)CrossRefGoogle Scholar
  33. 33.
    W.L. Ma, J.M. Luther, H.M. Zheng, Y. Wu, A.P. Alivisatos, Photovoltaic devices employing ternary PbSxSe1−x nanocrystals. Nano Lett. 9, 1699–1703 (2009)CrossRefGoogle Scholar
  34. 34.
    A. Begum, A. Hussain, A. Rahman, Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J. Nanotechnol. 3, 438–443 (2012)CrossRefGoogle Scholar
  35. 35.
    A.D.R. Pillai, K. Zhang, K. Bollenbach, D. Nminibapiel, W. Cao, H. Baumgart, V.S.K. Chakravadhanula, C. Kübel, V. Kochergin, ALD growth of PbTe and PbSe superlattices for thermoelectric applications. ECS Trans. 10, 131–139 (2013)Google Scholar
  36. 36.
    S.X. Lin, X. Zhang, X.Z. Shi, J.P. Wei, D.B. Lu, Y.Z. Zhang, H.H. Kou, C.M. Wang, Nanoscale semiconductor Pb1−xSnxSe (x = 0.2) thin films synthesized by electrochemical atomic layer deposition. Appl. Surf. Sci. 257, 5803–5807 (2011)CrossRefGoogle Scholar
  37. 37.
    J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, A.J. Nozik, Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol. ACS Nano 2, 217–280 (2008)CrossRefGoogle Scholar
  38. 38.
    O.A. Balitskii, W. Jaegermann, XPS study of InTe and GaTe single crystals oxidation. Mater. Chem. Phys. 97, 98–101 (2006)CrossRefGoogle Scholar
  39. 39.
    A.A. Al-Ghamdi, S. Al-Heniti, S.A. Khan, Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films. J. Lumin. 135, 295–300 (2013)CrossRefGoogle Scholar
  40. 40.
    P.K. Nair, E.B. Salgado, J. Capistrán, M.L. Ramón, M.T.S. Nair, R.A. Zingaro, PbSe thin films in all-chemically deposited solar cells. J. Electronchem. Soc. 10, D528–D537 (2010)CrossRefGoogle Scholar
  41. 41.
    S.V. Streltsov, A.Y. Manakov, A.P. Vokhmyanin, S.V. Ovsyannikov, V.V. Shchennikov, Crystal lattice and band structure of the intermediate high-pressure phase of PbSe. J. Phys. Condens. Matter 21, 385501 (2009)CrossRefGoogle Scholar
  42. 42.
    S.H. Wei, Al Zunger, Electronic and structural anomalies in lead chalcogenides. Phys. Rev. B 1, 13605 (1997)CrossRefGoogle Scholar
  43. 43.
    E.A. El-Sayad, B.S. Farag, A.T. Amin, Electrical properties of crystalline PbxSn1−xTe0.5Se0.5 thin films. Vacuum 84, 807–811 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xigui Sun
    • 1
  • Kewei Gao
    • 1
  • Xiaolu Pang
    • 1
  • Huisheng Yang
    • 1
  • Alex A. Volinsky
    • 2
  1. 1.Department of Materials Physics and ChemistryUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Mechanical EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations