Fabrication and experimental characterization of a sol–gel derived nanostructured n-ZnO/p-Si heterojunction diode

  • Satyendra Kumar Singh
  • Purnima Hazra
  • Shweta Tripathi
  • P. Chakrabarti


In this paper, fabrication and characterization of a sol–gel derived n-ZnO nanoparticle/p-Si heterojunction diode has been presented. A strong diffraction peak (002) obtained from XRD spectra of sol–gel derived ZnO thin film indicates that the growth of hexagonal wurtzite ZnO nanoparticles are preferably along the c-axis. The surface morphological features extracted from AFM and SEM images predict the uniform growth of ZnO nanoparticles over the p-Si substrate. The optical properties of ZnO nanoparticles have been measured in the spectral range of 300–1000 nm using ellipsometer and photoluminescence spectroscopy. The optical transmittance of ZnO nanoparticles has been observed between 81 and 92.66 % in visible region and the optical band gap has been found out to be 3.24 eV. Finally, metallic contacts were deposited on top of ZnO layer and bottom of Si layer to perform electrical characterization of nanostructured n-ZnO/p-Si heterojunction diodes. Electrical parameters including reverse saturation current, ideality factor, barrier height, rectification ratio have been calculated to explore the potential of the device for futuristic nanoelectronic and optoelectronic device applications.


Ideality Factor Schottky Contact Heterojunction Diode Spin Coating Technique Energy Loss Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Sharma, S. Vyas, C. Periasamy, P. Chakrabarti, Superlattices Microstruct. 75, 378 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Xu, G. Zheng, H. Wua, J. Wang, F. Gu, J. Su, F. Xian, Z. Liu, Opt. Mater. 35, 1582 (2013)CrossRefGoogle Scholar
  3. 3.
    A.-S. Gadallah, M.M. El-Nahass, Adv. Cond. Matter Phys. 2013, 234546 (2013)Google Scholar
  4. 4.
    M. Sahal, B. Hartiti, A. Ridah, M. Mollar, B. Mari, Microelectron. J. 39, 1425 (2008)CrossRefGoogle Scholar
  5. 5.
    P.-Y. Lee, S.-P. Chang, J.-F. Chang, E.-H. Hsu, S.-J. Chang, Int. J. Electrochem. Sci. 8, 6425 (2013)Google Scholar
  6. 6.
    M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 306, 78 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Rajan, H.K. Yadav, V. Gupta, M. Tomar, J. Mater. Sci. 48, 7994 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Gupta, A. Jain, R.M. Mehray, J. Mater. Sci. Technol. 26, 223 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Tataroğlu, H. Aydin, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, J. Electroceram. 32, 369 (2014)CrossRefGoogle Scholar
  10. 10.
    K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Mater. Trans. 50, 922 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Yakuphanoglu, Y. Caglar, M. Caglar, S. Ilican, Mater. Sci. Semicon. Process 13, 137 (2010)CrossRefGoogle Scholar
  12. 12.
    K.L. Foo, M. Kashif, U. Hashima, M.E. Ali, Optik 124, 5373 (2013)CrossRefGoogle Scholar
  13. 13.
    G.M. Ali, P. Chakrabarti, I.E.E.E. Photon, J. 2, 784 (2010)Google Scholar
  14. 14.
    K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, Appl. Surf. Sci. 258, 3710 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Sengupta, A. Ahmed, R. Labar, Mater. Lett. 109, 265 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Singh, P. Chakrabarti, Superlattices Microstruct. 64, 283 (2013)CrossRefGoogle Scholar
  17. 17.
    H.A. Mohamed, Optoelectron. Adv. Mat. 6, 389 (2012)Google Scholar
  18. 18.
    F. Yakuphanoglu, Phys. B 388, 226 (2007)CrossRefGoogle Scholar
  19. 19.
    J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)CrossRefGoogle Scholar
  20. 20.
    O. Pakma, N. Serin, T. Serin, Ş. Altındal, J. Appl. Phys. 104, 014501 (2008)CrossRefGoogle Scholar
  21. 21.
    F. Yakuphanoglu, Phys. B 388, 226–229 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Majumdar, P. Banerji, J. Appl. Phys. 105, 043704 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Somvanshi, S. Jit, IEEE Trans. Nanotechnol. 13(1), 62–69 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Greutert, G. Blatter, Semicond. Sci. Technol. 5, 111–137 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Satyendra Kumar Singh
    • 1
  • Purnima Hazra
    • 2
  • Shweta Tripathi
    • 1
  • P. Chakrabarti
    • 1
    • 3
  1. 1.Motilal Nehru National Institute of TechnologyAllahabadIndia
  2. 2.Shri Mata Vaishno Devi UniversityKakaryal, KatraIndia
  3. 3.Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations