Comparison study of graphene based conductive nanocomposites using poly(methyl methacrylate) and polypyrrole as matrix materials

  • Weiling Wang
  • Ahalapitiya H. Jayatissa


Graphene was used as the filler to mix with two kinds of polymer materials, poly(methyl methacrylate) (PMMA) and polypyrrole (PPy). PMMA is an insulator and PPy is an intrinsic semiconducting/conducting polymer. Graphene/PMMA nanocomposite (GrPMMA) was produced by solution blending and spin-coating deposition, and graphene/PPy nanocomposite (GrPPy) was produced by in situ polymerization and doctor-blade coating. The X-ray diffraction and Raman spectroscopy were used to characterize the structures of GrPMMA and GrPPy. The electrical conductivity was studied as a function of graphene concentration for both GrPMMA and GrPPy. The electrical conductivity of PMMA was improved drastically after adding graphene, and the electrical conductivity of GrPMMA increases as the graphene concentration increases. However, the electrical conductivity of PPy decreases after adding graphene, and the electrical conductivity of GrPPy decreases as the graphene concentration increases. The difference in change in electrical conductivity of PMMA and PPy after addition of graphene may be due to the different electron transport mechanisms of those two nanocomposite materials.


Graphene Oxide PMMA Graphene Sheet Polypyrrole Multilayer Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491–495 (2008)CrossRefGoogle Scholar
  2. 2.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Batzill, Surf. Sci. Rep. 67, 83–115 (2012)CrossRefGoogle Scholar
  5. 5.
    H. An, W.-J. Lee, J. Jung, Curr. Appl. Phys. 11, S81–S85 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Gautam, A.H. Jayatissa, Mater. Sci. Eng. C 31, 1405–1411 (2011)CrossRefGoogle Scholar
  7. 7.
    C. Dimitrakopoulos, Y.-M. Lin, A. Grill, D.B. Farmer, M. Freitag, Y. Sun, S.-J. Han, Z. Chen, K.A. Jenkins, Y. Zhu, Z. Liu, T.J. McArdle, J.A. Ott, R. Wisnieff, P. Avouris, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 28, 985 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Wei, J.I. Mitchell, C. Tansarawiput, W. Nam, M. Qi, P.D. Ye, X. Xu, Carbon 53, 374–379 (2013)CrossRefGoogle Scholar
  9. 9.
    J.D. Caldwell, T.J. Anderson, J.C. Culbertson, G.G. Jernigan, K.D. Hobart, F.J. Kub, M.J. Tadjer, J.L. Tedesco, J.K. Hite, M.A. Mastro, R.L. Myers-Ward, C.R. Eddy Jr, P.M. Campbell, D.K. Gaskill, ACS Nano 4, 1108–1114 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, J.H. Ahn, Nano Lett. 10, 490–493 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574–578 (2010)CrossRefGoogle Scholar
  12. 12.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Wang, P.K. Ang, Z. Wang, A.L. Tang, J.T. Thong, K.P. Loh, Nano Lett. 10, 92–98 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  15. 15.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538–542 (2008)CrossRefGoogle Scholar
  16. 16.
    U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, Small 6, 864–871 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3, 563–568 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Yang, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, P. Louette, J.J. Pireaux, X. Feng, K. Mullen, V. Palermo, C. Casiraghi, Carbon 53, 357–365 (2013)CrossRefGoogle Scholar
  19. 19.
    H.L. Poh, F. Sanek, A. Ambrosi, Z. Zhao, Z. Sofer, M. Pumera, Nanoscale 4, 3515–3522 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515–6530 (2010)CrossRefGoogle Scholar
  21. 21.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326–1330 (2012)CrossRefGoogle Scholar
  22. 22.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  23. 23.
    L. Huang, C. Li, W. Yuan, G. Shi, Nanoscale 5, 3780–3786 (2013)CrossRefGoogle Scholar
  24. 24.
    S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48, 6223–6232 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Feng, Z. Yan, R. Li, X. Liu, W. Hou, Polym. Bull. 70, 2291–2304 (2013)CrossRefGoogle Scholar
  26. 26.
    X. Yan, X. Zhang, H. Liu, Y. Liu, J. Ding, Y. Liu, Q. Cai, J. Zhang, Synth. Met. 196, 1–7 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia. J. Appl. Phys. 112, 064304 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Bhattacharya, S. De, S.N. Bhattacharya, S. Das, Phys. Condens. Matter 6, 10499 (1994)CrossRefGoogle Scholar
  29. 29.
    T.K. Vishnyvardhan, V.R. Kulkarani, C. Basavaraja, S.C. Ragavendra, Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bull. Mater. Sci. 29, 77–83 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Nanotechnology and MEMS Laboratory, Mechanical, Industrial, and Manufacturing Engineering DepartmentThe University of ToledoToledoUSA

Personalised recommendations