Alx(Sn2Se3)1−x phase change films for high-temperature data retention and fast transition speed application

  • Yifeng Hu
  • Xiaoqin Zhu
  • Hua Zou
  • Yi Lu
  • Jianzhong Xue
  • Yongxing Sui
  • Weihua Wu
  • Li Yuan
  • Sannian Song
  • Zhitang Song


Phase change behavior in Alx(Sn2Se3)1−x (x = 0.003, 0.010, 0.023) films were investigated by utilizing in situ resistance measurements. It is found that the crystallization temperatures and resistances increase with increasing of Al content. The analysis of X-ray diffraction indicates that the grain size decreases and the crystallization is suppressed by more Al doping. Al0.023(Sn2Se3)0.977 has an excellent thermal stability with the crystallization activation energy of 3.79 eV and the failure time is longer than that of Ge2Sb2Te5 film. The crystallization speed of Al0.023(Sn2Se3)0.977 film is faster than that of GST. The phase transition kinetics of Al0.023(Sn2Se3)0.977 films were investigated. The obtained values of Avrami indexes indicate that a one dimensional growth-dominated mechanism is responsible for the amorphous–crystalline transformation of Al0.023(Sn2Se3)0.977 film. We conclude that Al0.023(Sn2Se3)0.977 film is a good candidate for phase-change random-access memory applications with good thermal stability and high switching speed.


Sb2Te3 SnSe Phase Change Process Phase Change Random Access Memory Crystallization Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge financial support of the Open Fund of State Key Laboratory of Functional Materials for Informatics (KYZ14031) and the Scientific Research Fund Project of Jiangsu University of Technology (KYY14011).


  1. 1.
    G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp, M. Kund, Appl. Phys. Lett. 95, 043108 (2009)CrossRefGoogle Scholar
  2. 2.
    F. Gericke, T. Flissikowski, J. Lähnemann, F. Katmis, W. Braun, H. Riechert, H.T. Grahn, J. Appl. Phys. 111, 113524 (2012)CrossRefGoogle Scholar
  3. 3.
    R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 10, 414 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Ielmini, A.L. Lacaita, Mater. Today 14, 600 (2011)CrossRefGoogle Scholar
  5. 5.
    D.H. Kang, N. Young, Kim, H. Jeong, B.K. Cheong. Appl. Phys. Lett. 100, 063508 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Abrutis, V. Plausinaitiene, M. Skapas, C. Wiemer, W. Gawelda, J. Siegel, S. Rushworth, J. Cryst. Growth 311, 362 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Morikawa, K. Kurotsuchi, Y. Fujisaki, Y. Matsui, N. Takaura, Jpn. J. Appl. Phys. 51, 031201 (2012)Google Scholar
  8. 8.
    K.M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, J. Appl. Phys. 103, 083523 (2008)CrossRefGoogle Scholar
  9. 9.
    M.J. Peters, L.E. McNeil, Phys. Rev. B 41, 5893 (1990)CrossRefGoogle Scholar
  10. 10.
    F. Rao, Z. Song, K. Ren, X. Zhou, Y. Cheng, L. Wu, B. Liu, Nanotechnology 22, 1 (2011)CrossRefGoogle Scholar
  11. 11.
    J.H. Seo, K.H. Song, H.Y. Lee, J. Appl. Phys. 108, 064515 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Raoux, M. Salinga, J.L. Jordan, A. Kellock, J. Appl. Phys. 101, 044909 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Peng, L.C. Wu, Z.T. Song, F. Rao, M. Zhu, X.L. Li, B. Liu, L.M. Cheng, S.L. Feng, P.X. Yang, J.H. Chu, Appl. Surf. Sci. 257, 10667 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Zhu, L.C. Wu, F. Rao, Z.T. Song, X.L. Li, C. Peng, X.L. Zhou, K. Ren, D.N. Yao, S.L. Feng, J. Alloys Compd. 509(41), 10105 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Cheng, Z. Song, Y. Gu, S. Song, F. Rao, L. Wu, B. Liu, S. Feng, Appl. Phys. Lett. 99, 261914 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Aguiar, R. Caram, M. Oliveira, C. Kiminami, J. Mater. Sci. 34, 4607 (1999)CrossRefGoogle Scholar
  17. 17.
    S.T. Mahmoud, H. Ghamlouche, N. Qamhieh, S. Ahmed, J. Non-cryst. Solids 354, 1976 (2008)CrossRefGoogle Scholar
  18. 18.
    P.H. Lee, P.C. Chang, D.S. Chao, J.H. Liang, S.C. Chang, M.J. Tsai, T.S. Chin, Thin Solid Films 520, 6636 (2012)CrossRefGoogle Scholar
  19. 19.
    P. Cheng, W. Liangcai, R. Feng, S. Zhitang, Z. Xilin, Z. Min, L. Bo, Y. Dongning, F. Songlin, Y. Pingxiong, C. Junhao, Scripta Mater. 65, 327 (2011)CrossRefGoogle Scholar
  20. 20.
    K.F. Kao, Y.C. Chu, M.J. Tsai, T.S. Chin, J. Appl. Phys. 111, 102808 (2012)CrossRefGoogle Scholar
  21. 21.
    K.F. Kao, C.C. Chang, F.T. Chen, M.J. Tsai, T.S. Chin, Scripta Mater. 63, 855 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.J. Huang, T.C. Chung, C.H. Wang, T.E. Hsieh, J. Electrochem. Soc. 157, 113 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Avrami, J. Chem. Phys. 9, 177 (1941)CrossRefGoogle Scholar
  24. 24.
    J.H. Coombs, A.P.J.M. Jongenelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4906 (1995)CrossRefGoogle Scholar
  25. 25.
    E.R. Meinders, M.H.R. Lankhorst, Jpn. J. Appl. Phys. 42, 809 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yifeng Hu
    • 1
  • Xiaoqin Zhu
    • 1
  • Hua Zou
    • 1
  • Yi Lu
    • 2
  • Jianzhong Xue
    • 1
  • Yongxing Sui
    • 1
  • Weihua Wu
    • 1
  • Li Yuan
    • 1
  • Sannian Song
    • 3
  • Zhitang Song
    • 3
  1. 1.School of Mathematics and PhysicsJiangsu Teachers University of TechnologyChangzhouChina
  2. 2.School of Electricity and Information EngineeringJiangsu Teachers University of TechnologyChangzhouChina
  3. 3.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations