Oxygen vacancy-mediated room temperature ferromagnetism in Sr-doped SnO2 nanoparticles

  • Na Wang
  • Wei Zhou
  • Yinghua Liang
  • Wenquan Cui
  • Ping Wu


Sn1−x Sr x O2 nanoparticles (NPs) were synthesized by the sol–gel method in the present work. X-ray diffraction analyses reveal that Sr atoms are incorporated into the SnO2 NPs without forming secondary phase with Sr concentration up to 5 at.%. The room temperature photoluminescence measurements indicate that Sr doping increases the number of singly charged oxygen vacancies (V O + ) in SnO2 NPs due to the different ionic radii of Sr2+ and Sn4+. Both pure and Sr-doped SnO2 NPs are ferromagnetic and the largest saturation magnetization of 6.98 × 10−4 emu/g has been observed in Sn0.95Sr0.05O2 NPs which has the largest concentration of V O + defects. The correlation between the induced V O + defects and the enhanced ferromagnetism implies that the observed ferromagnetic ordering in Sn1−x Sr x O2 NPs is connected with V O + defects. Meanwhile, air-annealing of the samples resulting in a significant suppression of the ferromagnetism further supports this point.


SnO2 High Resolution Transmission Electron Microscopy Oxygen Vacancy High Resolution Transmission Electron Microscopy Physical Property Measurement System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (51074112).


  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)CrossRefGoogle Scholar
  2. 2.
    H. Ohno, Science 281, 951 (1998)CrossRefGoogle Scholar
  3. 3.
    N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 033205 (2008)CrossRefGoogle Scholar
  4. 4.
    G. Rahman, V.M. García-Suárez, S.C. Hong, Phys. Rev. B 78, 184404 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Wang, Q. Wu, H.L. Ge, T. Shang, J.Z. Jiang, Nanotechnology 23, 075704 (2012)CrossRefGoogle Scholar
  6. 6.
    G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Phys. Rev. B 85, 165319 (2012)CrossRefGoogle Scholar
  7. 7.
    V.B. Kamble, S.V. Bhat, A.M. Umarji, J. Appl. Phys. 113, 244307 (2013)CrossRefGoogle Scholar
  8. 8.
    C.W. Zhang, H. Kao, J.M. Dong, Phys. Lett. A 373, 2592 (2009)CrossRefGoogle Scholar
  9. 9.
    J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett. 93, 192503 (2008)CrossRefGoogle Scholar
  10. 10.
    D.Q. Gao, J.Y. Li, Z.X. Li, Z.H. Zhang, J. Zhang, H.G. Shi, D.S. Xue, J. Phys. Chem. C 114, 11703 (2010)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)CrossRefGoogle Scholar
  12. 12.
    C.D. Pemmaraju, S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005)CrossRefGoogle Scholar
  13. 13.
    X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, J. Phys. Chem. C 114, 4790 (2010)CrossRefGoogle Scholar
  14. 14.
    J.F. Wang, H.C. Chen, W.B. Su, G.Z. Zang, B. Wang, R.W. Gao, J. Alloys Compd. 413, 35 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Johari, S. Srivastav, M. Sharma, M.C. Bhatnagar, J. Magn. Magn. Mater. 362, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, S.H. Ge, Y.L. Zuo, J. Wang, J. Qi, Script. Mater. 63, 953 (2010)CrossRefGoogle Scholar
  18. 18.
    Z.Q. Jiang, T.T. Jiang, J.F. Wang, Z.J. Wang, X.R. Xu, Z.X. Wang, R. Zhao, Z.Y. Li, C. Wang, J. Colloid Interface Sci. 437, 252 (2015)CrossRefGoogle Scholar
  19. 19.
    W. Zhou, X. Tang, P. Xing, W. Liu, P. Wu, Phys. Lett. A 376, 203 (2012)CrossRefGoogle Scholar
  20. 20.
    V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Mater. Lett. 101, 57 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.F. Li, R. Deng, Y.F. Tian, B. Yao, T. Wu, Appl. Phys. Lett. 100, 172402 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Chetri, B. Saikia, A. Choudhury, J. Appl. Phys. 113, 233514 (2013)CrossRefGoogle Scholar
  23. 23.
    G.G. Khan, S. Ghosh, K. Mandal, J. Solid State Chem. 186, 278 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118 (2011)CrossRefGoogle Scholar
  25. 25.
    D. Kim, J.H. Yang, J. Hong, J. Appl. Phys. 106, 013908 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)CrossRefGoogle Scholar
  27. 27.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  28. 28.
    S. Banerjee, M. Mandal, N. Gayathri, M. Sardar, Appl. Phys. Lett. 91, 182501 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Na Wang
    • 1
    • 2
  • Wei Zhou
    • 1
  • Yinghua Liang
    • 3
  • Wenquan Cui
    • 3
  • Ping Wu
    • 1
  1. 1.Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of ScienceTianjin Chengjian UniversityTianjinPeople’s Republic of China
  3. 3.College of Chemical EngineeringNorth China University of Science and TechnologyTangshanPeople’s Republic of China

Personalised recommendations