Magnetic, dielectric and magnetoelectric properties in (1 − x)Pb(Zr0.52Ti0.48)O3 + (x)CoFe2O4 composites

  • M. Atif
  • M. Nadeem
  • R. Grössinger
  • R. Sato Turtelli
  • F. Kubel


Multiferroic composites of (1 − x)PbZr0.52Ti0.48O3 + (x)CoFe2O4 with x = 0.0, 0.15, 0.30, 0.45 and 1.0 are synthesized by using ball milling method. Rietveld refinement of XRD patterns confirmed the single phase formation in x = 0.0 and x = 1.0 and two distinct phase formation in x = 0.15, 0.30 and 0.45 composites. SEM images explored the effect of CFO content on the grain connectivity of each phase in the prepared composites. The dielectric properties showed dielectric dispersion with increasing frequency due to interfacial polarization; whereas the dielectric constant is found to increase with increasing CFO content which is attributed to the space charge effect. AC conductivity analysis suggested the mixed polaron hopping type of conduction mechanism. Magnetic hysteresis loops exhibited ferromagnetic like behaviour, indicating the presence of ordered magnetic structure in the prepared composites. Furthermore, with increasing CFO content, the saturation magnetization, magnetostriction and strain sensitivity is found to be increased which in turn have a significant effect on the magnetoelectric coefficient. The maximum magnetoelectric coefficient of 1.45 mV cm−1 Oe−1 is obtained for x = 0.30 composite. Here, the observed variation in the magnetoelectric coefficient is correlated with the microstructure as well as the amount of CFO content.


CoFe2O4 Rietveld Refinement Morphotropic Phase Boundary Magnetoelectric Effect Prepared Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  3. 3.
    W. Erenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  4. 4.
    A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Solid State Sci. 11, 1979–1984 (2009)CrossRefGoogle Scholar
  5. 5.
    G.V. Duong, R. Grössinger, R.S. Turtelli, IEEE Trans. Magn. 42, 3611–3613 (2006)CrossRefGoogle Scholar
  6. 6.
    E.M. Bourium, H. Tanaka, M. Gabbay, G. Fantozzi, B.L. Cheng, J. Appl. Phys. 91, 666 (2002)Google Scholar
  7. 7.
    S. Zhang, C.A. Randall, T.R. Shrout, Appl. Phys. Lett. 83, 3150 (2003)CrossRefGoogle Scholar
  8. 8.
    B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Atif, R.S. Turtelli, R. Grössinger, F. Kubel, J. Appl. Phys. 113, 153902 (2013)CrossRefGoogle Scholar
  10. 10.
    R.W. McCallum, K.W. Dennis, D.C. Jiles, J.E. Snyder, Y.H. Chen, Low Temp. Phys. 27, 266 (2001)CrossRefGoogle Scholar
  11. 11.
    D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Appl. Nanosci. 2, 261–273 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Chen, S. Shannigrahi, X.F. Chen, Z.H. Wang, W. Zhu, O.K. Tan, Solid State Commun. 150, 271 (2010)CrossRefGoogle Scholar
  13. 13.
    S.S. Chougule, D.R. Patil, B.K. Chougule, J. Alloys Compd. 452, 205–209 (2008)CrossRefGoogle Scholar
  14. 14.
    Dipti, J.K. Juneja, S. Singh, K.K. Raina, C. Prakash, Ceram. Int. 41, 6108–6112 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Basu, K.P. Babu, R.N.P. Choudhary, Mat. Chem. Phys. 132, 570–580 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Amorín, T. Hungrí, A.R. Landa-Cánovas, M. Torres, M. Dollé, M. Algueró, A. Castro, J. Nanopart. Res. 13, 4189–4200 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Atif, M. Nadeem, J. Alloys Compd. 623, 447–453 (2015)CrossRefGoogle Scholar
  18. 18.
    G.V. Duong, R.S. Turtelli, R. Groessinger, J. Magn. Magn. Mater. 322, 1581–1584 (2010)CrossRefGoogle Scholar
  19. 19.
    G. Vi, Z. Wu, M. Sayer, J. Appl. Phys. 64, 2717 (1988)CrossRefGoogle Scholar
  20. 20.
    M. Atif, M. Nadeem, J. Sol-Gel. Sci. Technol. 72, 615 (2014)CrossRefGoogle Scholar
  21. 21.
    S.S. Chougule, B.K. Chougule, Smart Mater. Struct. 16, 493 (2007)CrossRefGoogle Scholar
  22. 22.
    H. Zheng, L. Li, Z. Xu, W. Weng, G. Han, N. Ma, P. Du, J. Appl. Phys. 113, 044101 (2013)CrossRefGoogle Scholar
  23. 23.
    M.D. Rahaman, S.K. Saha, T.N. Ahmed, D.K. Saha, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 371, 112–120 (2014)CrossRefGoogle Scholar
  24. 24.
    B. Xiao, N. Ma, P. Du, J. Mater. Chem. C 1, 6325 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Muhammad, R.S. Turtelli, M. Kriegisch, R. Grössinger, F. Kubel, T. Konegger, J. Appl. Phys. 111, 013918 (2012)CrossRefGoogle Scholar
  26. 26.
    L.M. Hrib, O.F. Caltun, J. Alloys Compd. 509, 6644–6648 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Agarwal, O.F. Caltun, K. Sreenivas, Solid State Commun. 152, 1951–1955 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, G. Srinivasan, Solid State Commun. 132, 319–324 (2004)CrossRefGoogle Scholar
  29. 29.
    C.E. Ciomaga, M. Airimioaei, V. Nica, L.M. Hrib, O.F. Caltun, A.R. Iordan, C. Galassi, L. Mitoseriu, M.N. Palamaru, J. Eur. Ceram. Soc. 32, 3325–3337 (2012)CrossRefGoogle Scholar
  30. 30.
    C.M. Kanamadi, J.S. Kim, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, Appl. Phys. A 97, 575–580 (2009)CrossRefGoogle Scholar
  31. 31.
    R.S. Devan, D.R. Dhakras, T.G. Vichare, A.S. Joshi, S.R. Jigajeni, Y.-R. Ma, B.K. Chougule, J. Phys. D Appl. Phys. 41, 105010 (2008)CrossRefGoogle Scholar
  32. 32.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123 (2008)CrossRefGoogle Scholar
  33. 33.
    R. Islam, S. Priya, Appl. Phys. Lett. 89, 152911 (2006)CrossRefGoogle Scholar
  34. 34.
    A.D. Sheikh, A.S. Fawzi, V.L. Mathe, J. Magn. Magn. Mater. 323, 740–747 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Atif
    • 1
  • M. Nadeem
    • 2
  • R. Grössinger
    • 3
  • R. Sato Turtelli
    • 3
  • F. Kubel
    • 4
  1. 1.Functional Materials Lab, Department of PhysicsAir UniversityIslamabadPakistan
  2. 2.EMMG, Physics DivisionPINSTECHIslamabadPakistan
  3. 3.Institute of Solid State PhysicsTechnical University of ViennaViennaAustria
  4. 4.Institute of Chemical Technologies and AnalyticsTechnical University of ViennaViennaAustria

Personalised recommendations