Optical, structural, catalytic and electrochemical properties of the Au nanoparticles synthesized using CTAB based gels

  • Ravi Kant Upadhyay
  • Sujit Deshmukh
  • Susmita Saha
  • Anjan Barman
  • Susanta Sinha Roy


Gold nanoparticles (Au NPs) were synthesized using Au containing CTAB gel as a precursor. The effect of concentration of NaBH4 on the structural, optical, catalytic and electrochemical properties of the Au NPs was also investigated. With the increase of NaBH4 concentration from 0.1 to 0.15 M, an increase in the particle size and change in the morphology from spherical to elliptical was observed. Absorption and emission properties of the Au NPs were also probed using UV–Vis and photoluminescence spectroscopy respectively. Synthesized Au NPs samples were explored as catalyst for the reduction of 4-nitrophenol to 4-aminophenol. Catalytic activity of Au NPs samples prepared using 0.1 and 0.15 M concentration of NaBH4 were also compared. It was found that Au NPs prepared using lower concentration of NaBH4 (Au-0.1) exhibits better catalytic activity compared to the other Au NPs sample (Au-0.15). Synthesized Au NPs were also utilized as electrode material for the detection of Pb2+ ions, results show that Au NPs modified glassy carbon electrode can detect very low concentration of Pb2+ ions (2 µM). Au-0.1 sample exhibited better electrochemical performance compared to the Au-0.15 sample.


Glassy Carbon Electrode NaBH4 Differential Pulse Voltammetry AuCl3 Wormlike Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Ravi Kant Upadhyay is indebted to Shiv Nadar University for providing Ph.D. scholarship.


  1. 1.
    Y. Liu, C. Wang, Y. Wei, L. Zhu, D. Li, J.S. Jiang, N.M. Markovic, V.R. Stamenkovic, S. Sun, Nano Lett. 11, 1614 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Li, D.-M. Smilgies, A.D. Price, D.L. Huber, P.G. Clem, H. Fan, ACS Nano 8, 4799 (2014)CrossRefGoogle Scholar
  3. 3.
    H. You, S. Yang, B. Ding, H. Yang, Chem. Soc. Rev. 42, 2880 (2013)CrossRefGoogle Scholar
  4. 4.
    C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)CrossRefGoogle Scholar
  5. 5.
    E.M. Egorova, A.A. Revina, Colloids Surf. A 168, 87 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Kumar, NPG Asia Mater. 6, 82 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Kumar Vemula, U. Aslam, V. Ajay Mallia, G. John, Chem. Mater. 19, 138 (2007)CrossRefGoogle Scholar
  8. 8.
    X. Gao, F. Lu, B. Dong, Y. Liu, Y. Gao, L. Zheng, Chem. Commun. 51, 843 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Das, K. Shim, S. An, D. Yi, Toxicol. Environ. Health Sci. 3, 193 (2011)CrossRefGoogle Scholar
  10. 10.
    C.-C. Chen, H.-C. You, E. Chang, F.-H. Ko, J. Mater. Sci. Mater. Electron. 24, 376 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Vohra, N. Singh, S. Mittal, M.L. Singla, J. Mater. Sci. Mater. Electron. 24, 2689 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Yang, G. An, X. Zhao, J. Mater. Sci. Mater. Electron. 24, 3490 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Cheng, S. Dong, E. Wang, Langmuir 19, 9434 (2003)CrossRefGoogle Scholar
  14. 14.
    R. Narayanan, R.J. Lipert, M.D. Porter, Anal. Chem. 80, 2265 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Chen, J. Wu, H. Li, G. Cheng, Z. Lu, C.-M. Che, Rare Met. 29, 180 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Corma, P. Serna, Science 313, 332 (2006)CrossRefGoogle Scholar
  17. 17.
    P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Coord. Chem. Rev. 287, 114 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Zhao, N. Li, L. Salmon, N. Liu, J. Ruiz, D. Astruc, Chem. Commun. 49, 3218 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Xiao, S. Chen, L. Zhang, S. Zhou, W. Wu, Chem. Commun. 48, 11751 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Woo, K.H. Park, Catal. Commun. 46, 133 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Xu, G. Duan, Y. Li, G. Liu, J. Wang, H. Zhang, Z. Dai, W. Cai, ACS Appl. Mater. Interfaces 6, 65 (2014)CrossRefGoogle Scholar
  22. 22.
    R.K. Upadhyay, N. Soin, S. Saha, A. Barman, S.S. Roy, Mater. Chem. Phys. 156, 105 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Roy, M. Maiti, R.R. Nayak, S. Roy, J. Mater. Chem. B 1, 5588 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Carlos, D.A. Maretto, R.J. Poppi, M.I.Z. Sato, L.M.M. Ottoboni, Microchem. J. 99, 15 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 39, 549 (2007)CrossRefGoogle Scholar
  26. 26.
    G. An, C. Yang, X. Zhao, J. Mater. Sci. Mater. Electron. 25, 2522 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Gangula, R. Podila, R. M, L. Karanam, C. Janardhana, A.M. Rao, Langmuir 27, 15268 (2011)CrossRefGoogle Scholar
  28. 28.
    H.-S. Shin, S. Huh, ACS Appl. Mater. Interfaces 4, 6324 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Seoudi, D.A. Said, World J. Nano Sci. Eng. 1, 51 (2011)CrossRefGoogle Scholar
  30. 30.
    S.S. Kumar, C.S. Kumar, J. Mathiyarasu, K.L. Phani, Langmuir 23, 3401 (2007)CrossRefGoogle Scholar
  31. 31.
    S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, E. Marsili, Green Chem. 14, 1322 (2012)CrossRefGoogle Scholar
  32. 32.
    S.S. Dash, B.G. Bag, P. Hota, Appl. Nanosci. 5, 343 (2015)CrossRefGoogle Scholar
  33. 33.
    K.Y. Lee, Y.W. Lee, J.-H. Lee, S.W. Han, Colloids Surf. A 372, 146 (2010)CrossRefGoogle Scholar
  34. 34.
    P. Dauthal, M. Mukhopadhyay, Ind. Eng. Chem. Res. 51, 13014 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Bai, Y. Gao, H.-G. Liu, L. Zheng, J. Phys. Chem. C 113, 17730 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Kundu, S. Lau, H. Liang, J. Phys. Chem. C 113, 5150 (2009)CrossRefGoogle Scholar
  37. 37.
    L. Li, Z. Wang, T. Huang, J. Xie, L. Qi, Langmuir 26, 12330 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Nan, P.A. Sims, X.S. Xie, Chem. Phys. Chem. 9, 707 (2008)Google Scholar
  39. 39.
    D. Lasne, G.A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J. 91, 4598 (2006)CrossRefGoogle Scholar
  40. 40.
    M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, M. Orrit, Nano Lett. 12, 4385 (2012)CrossRefGoogle Scholar
  41. 41.
    M.R. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003)CrossRefGoogle Scholar
  42. 42.
    H. Hu, H. Duan, J.K.W. Yang, Z.X. Shen, ACS Nano 6, 10147 (2012)CrossRefGoogle Scholar
  43. 43.
    Q. Song, M. Li, L. Huang, Q. Wu, Y. Zhou, Y. Wang, Anal. Chim. Acta 787, 64 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ravi Kant Upadhyay
    • 1
  • Sujit Deshmukh
    • 2
  • Susmita Saha
    • 3
  • Anjan Barman
    • 3
  • Susanta Sinha Roy
    • 2
  1. 1.Department of Chemistry, School of Natural SciencesShiv Nadar UniversityGautam Budh NagarIndia
  2. 2.Department of Physics, School of Natural SciencesShiv Nadar UniversityGautam Budh NagarIndia
  3. 3.Department of Condensed Matter Physics and Material SciencesS. N. Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations