Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties

  • A. Chroneos
  • R. V. Vovk


Oxygen is introduced in germanium during crystal growth and processing and can lead to the formation of clusters that may impact the performance of devices. Therefore the understanding of its properties in germanium over a wide temperature range is important. Here we employ the so-called cBΩ model in which the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω) to describe oxygen diffusion in germanium. The model describes oxygen diffusion in germanium in the temperature range considered and the derived results are discussed in view of the available experimental data.


Germanium Defect Parameter Attempt Frequency Isothermal Bulk Modulus Gate Dielectric Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007)Google Scholar
  2. 2.
    C. Janke, R. Jones, S. Öberg, P.R. Briddon, J. Mater. Sci. Mater. Electron. 18, 775 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, H. Bracht, J. Appl. Phys. 109, 113527 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Chroneos, J. Mater. Sci. Mater. Electron. 24, 1741 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Chroneos, H. Bracht, Appl. Phys. Rev. 1, 011301 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. Mater. Electron. 19, 915 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, H. Bracht, Appl. Phys. Lett. 99, 072112 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Chroneos, U. Schwingenschlögl, A. Dimoulas, Ann. Phys. (Berlin) 524, 123 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, A. Dimoulas, J. Phys. Condens. Matter 24, 195802 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Philibert, Defect Diffus. Forum 249, 61 (2006)Google Scholar
  11. 11.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 4111 (1977)CrossRefGoogle Scholar
  12. 12.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 2348 (1977)CrossRefGoogle Scholar
  13. 13.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 22, 3130 (1980)CrossRefGoogle Scholar
  14. 14.
    P. Varotsos, K. Alexopoulos, Thermodynamics of Point Defects and their Relation with the Bulk Properties (North-Holland, Amsterdam, 1986)Google Scholar
  15. 15.
    P. Varotsos, J. Appl. Phys. 101, 123503 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Varotsos, Solid State Ion. 179, 438 (2008)CrossRefGoogle Scholar
  17. 17.
    B.H. Zhang, X.P. Wu, Appl. Phys. Lett. 100, 051901 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Vallianatos, V. Saltas, Phys. Chem. Miner. 41, 181 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Varotsos, K. Alexopoulos, Phys. Stat. Solidi B 110, 9 (1982)CrossRefGoogle Scholar
  20. 20.
    A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)CrossRefGoogle Scholar
  21. 21.
    E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)CrossRefGoogle Scholar
  22. 22.
    C.A. Londos, E.N. Sgourou, A. Chroneos, J. Mater. Sci. Mater. Electron. 25, 914 (2014)CrossRefGoogle Scholar
  23. 23.
    J.W. Corbett, R.S. McDonald, G.D. Watkins, J. Phys. Chem. Solids 25, 873 (1964)CrossRefGoogle Scholar
  24. 24.
    V. Gusakov, J. Phys. Condens. Matter 17, S2285 (2005)CrossRefGoogle Scholar
  25. 25.
    G.G. Scapellato, E. Bruno, F. Priolo, Mater. Sci. Semicond. Process. 14, 656 (2012)CrossRefGoogle Scholar
  26. 26.
    H.M. Kagaya, N. Shoji, T. Soma, Phys. Stat. Solidi B 139, 417 (1987)CrossRefGoogle Scholar
  27. 27.
    V. Hadjicontis, K. Eftaxias, J. Phys. Chem. Solids 52, 437 (1991)CrossRefGoogle Scholar
  28. 28.
    K. Eftaxias, V. Hadjicontis, Phys. Stat. Solidi B 160, K9 (1990)CrossRefGoogle Scholar
  29. 29.
    B.H. Zhang, X.P. Wu, J.S. Xu, R.L. Zhou, J. Appl. Phys. 108, 053505 (2010)CrossRefGoogle Scholar
  30. 30.
    B.H. Zhang, X.P. Wu, R.L. Zhou, Solid State Ion. 186, 20 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Chroneos, M.E. Fitzpatrick, L.H. Tsoukalas, J. Mater. Sci.: Mater. Electron. 26, 3287 (2015)Google Scholar
  32. 32.
    B.H. Zhang, X.P. Wu, Chin. Phys. B 22, 056601 (2013)CrossRefGoogle Scholar
  33. 33.
    B.H. Zhang, AIP Adv. 4, 017128 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Chroneos, R.V. Vovk, Solid State Ion. 274, 1 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Physics DepartmentV. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations