Skip to main content
Log in

Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Oxygen is introduced in germanium during crystal growth and processing and can lead to the formation of clusters that may impact the performance of devices. Therefore the understanding of its properties in germanium over a wide temperature range is important. Here we employ the so-called cBΩ model in which the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω) to describe oxygen diffusion in germanium. The model describes oxygen diffusion in germanium in the temperature range considered and the derived results are discussed in view of the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007)

    Google Scholar 

  2. C. Janke, R. Jones, S. Öberg, P.R. Briddon, J. Mater. Sci. Mater. Electron. 18, 775 (2007)

    Article  Google Scholar 

  3. G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, H. Bracht, J. Appl. Phys. 109, 113527 (2011)

    Article  Google Scholar 

  4. A. Chroneos, J. Mater. Sci. Mater. Electron. 24, 1741 (2013)

    Article  Google Scholar 

  5. A. Chroneos, H. Bracht, Appl. Phys. Rev. 1, 011301 (2014)

    Article  Google Scholar 

  6. M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. Mater. Electron. 19, 915 (2008)

    Article  Google Scholar 

  7. H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, H. Bracht, Appl. Phys. Lett. 99, 072112 (2011)

    Article  Google Scholar 

  8. A. Chroneos, U. Schwingenschlögl, A. Dimoulas, Ann. Phys. (Berlin) 524, 123 (2012)

    Article  Google Scholar 

  9. H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, A. Dimoulas, J. Phys. Condens. Matter 24, 195802 (2012)

    Article  Google Scholar 

  10. J. Philibert, Defect Diffus. Forum 249, 61 (2006)

    Google Scholar 

  11. P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 4111 (1977)

    Article  Google Scholar 

  12. P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 2348 (1977)

    Article  Google Scholar 

  13. P. Varotsos, K. Alexopoulos, Phys. Rev. B 22, 3130 (1980)

    Article  Google Scholar 

  14. P. Varotsos, K. Alexopoulos, Thermodynamics of Point Defects and their Relation with the Bulk Properties (North-Holland, Amsterdam, 1986)

    Google Scholar 

  15. P. Varotsos, J. Appl. Phys. 101, 123503 (2007)

    Article  Google Scholar 

  16. P. Varotsos, Solid State Ion. 179, 438 (2008)

    Article  Google Scholar 

  17. B.H. Zhang, X.P. Wu, Appl. Phys. Lett. 100, 051901 (2012)

    Article  Google Scholar 

  18. F. Vallianatos, V. Saltas, Phys. Chem. Miner. 41, 181 (2014)

    Article  Google Scholar 

  19. P. Varotsos, K. Alexopoulos, Phys. Stat. Solidi B 110, 9 (1982)

    Article  Google Scholar 

  20. A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)

    Article  Google Scholar 

  21. E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)

    Article  Google Scholar 

  22. C.A. Londos, E.N. Sgourou, A. Chroneos, J. Mater. Sci. Mater. Electron. 25, 914 (2014)

    Article  Google Scholar 

  23. J.W. Corbett, R.S. McDonald, G.D. Watkins, J. Phys. Chem. Solids 25, 873 (1964)

    Article  Google Scholar 

  24. V. Gusakov, J. Phys. Condens. Matter 17, S2285 (2005)

    Article  Google Scholar 

  25. G.G. Scapellato, E. Bruno, F. Priolo, Mater. Sci. Semicond. Process. 14, 656 (2012)

    Article  Google Scholar 

  26. H.M. Kagaya, N. Shoji, T. Soma, Phys. Stat. Solidi B 139, 417 (1987)

    Article  Google Scholar 

  27. V. Hadjicontis, K. Eftaxias, J. Phys. Chem. Solids 52, 437 (1991)

    Article  Google Scholar 

  28. K. Eftaxias, V. Hadjicontis, Phys. Stat. Solidi B 160, K9 (1990)

    Article  Google Scholar 

  29. B.H. Zhang, X.P. Wu, J.S. Xu, R.L. Zhou, J. Appl. Phys. 108, 053505 (2010)

    Article  Google Scholar 

  30. B.H. Zhang, X.P. Wu, R.L. Zhou, Solid State Ion. 186, 20 (2011)

    Article  Google Scholar 

  31. A. Chroneos, M.E. Fitzpatrick, L.H. Tsoukalas, J. Mater. Sci.: Mater. Electron. 26, 3287 (2015)

    Google Scholar 

  32. B.H. Zhang, X.P. Wu, Chin. Phys. B 22, 056601 (2013)

    Article  Google Scholar 

  33. B.H. Zhang, AIP Adv. 4, 017128 (2014)

    Article  Google Scholar 

  34. A. Chroneos, R.V. Vovk, Solid State Ion. 274, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chroneos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chroneos, A., Vovk, R.V. Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties. J Mater Sci: Mater Electron 26, 7378–7380 (2015). https://doi.org/10.1007/s10854-015-3367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3367-7

Keywords

Navigation