Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 7290–7294 | Cite as

Preparation and investigation of Eu3+-activated ZnMoO4 phosphors for white LED

  • Daqiang Hu
  • Weiliang Huan
  • Ying Wang
  • Yandong Wang


Eu3+-doped ZnMoO4 red phosphors with different doping concentrations were synthesized at the temperature of 800 °C by solid-state reaction technique in air atmosphere. The structures of the phosphors were characterized by X-ray diffraction and Raman spectra. The excitation and emission spectra were used to investigate the photoluminescent properties of the phosphors. The effect of Eu3+ concentration on the structural and photoluminescent properties of ZnMoO4:Eu3+ red phosphors were discussed systemically. And the photoluminescent properties of ZnMoO4:Eu3+ red phosphors under different excitation wavelengths were investigated to find their utilities in various lighting applications. Strong red emission intensity and high color purity with chromaticity coordinates (0.666, 0.334) were obtained for Zn0.8MoO4:0.2Eu3+ phosphors excited at 395 nm. The Zn1−xMoO4:xEu3+ phosphors, which could be applied as red-emitting phosphors excited by ultra-violet and blue chips, have potential application in white light-emitting diodes.


Photoluminescent Property CaMoO4 Magnetic Dipole Transition SrMoO4 BaMoO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 61404070), the Science Research Project of Liaoning Educational Committee (Grant No. L2014116) and the Anshan Science and Technology Planning Project of China (Grant No. 1840).


  1. 1.
    J.Y. Tang, J.H. Chen, L.Y. Hao, X. Xu, W.J. Xie, Q.X. Li, J. Lumin. 131, 1101 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Rajeswari, C.K. Jayasankar, D. Ramachari, S. Surendra Babu, Ceram. Int. 39, 7523 (2013)CrossRefGoogle Scholar
  3. 3.
    Z.J. Wang, P.L. Li, Z.P. Yang, Q.L. Guo, G.Y. Dong, Ceram. Int. 40, 15283 (2014)CrossRefGoogle Scholar
  4. 4.
    H.K. Yang, J.H. Lee, W.T. Hong, H. Jang, B.K. Moon, J.H. Jeong, J.Y. Je, Ceram. Int. 41, 991 (2015)CrossRefGoogle Scholar
  5. 5.
    S.K. Zand, S. Baghshahi, M. Rajabi, J. Mater. Sci. Mater. Electron. 25, 4412 (2014)CrossRefGoogle Scholar
  6. 6.
    O.A. Lopez, J. McKittrick, L.E. Shea, J. Lumin. 71, 1 (1997)CrossRefGoogle Scholar
  7. 7.
    R.J. Xie, M. Mitomo, K. Uheda, F.F. Xu, Y. Akimune, J. Am. Ceram. Soc. 85, 1229 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Khanna, P.S. Dutta, J. Solid State Chem. 198, 93 (2013)CrossRefGoogle Scholar
  9. 9.
    M.H. Lee, W.S. Jung, Ceram. Int. 40, 13419 (2014)CrossRefGoogle Scholar
  10. 10.
    F.Y. Yu, J. Zuo, Z. Zhao, C.Y. Jiang, Q. Yang, Mater. Res. Bull. 46, 1327 (2011)CrossRefGoogle Scholar
  11. 11.
    B. Wu, W.Q. Yang, H.G. Liu, L. Huang, B.W. Zhao, C. Wang, G.L. Xu, Y. Lin, Spectrochim. Acta Part A 123, 12 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.F. Liu, S.H. Dai, Y.N. Lu, H.H. Min, Powder Technol. 221, 412 (2012)CrossRefGoogle Scholar
  13. 13.
    L.Y. Zhou, J.S. Wei, L.H. Yi, F.Z. Gong, J.L. Huang, W. Wang, Mater. Res. Bull. 44, 1411 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.S. Hu, W.D. Zhuang, H.Q. Ye, D.H. Wang, S.S. Zhang, X.W. Huang, J. Alloys Compd. 390, 226 (2005)CrossRefGoogle Scholar
  15. 15.
    J.G. Wang, X.P. Jing, C.H. Yan, J.H. Lin, F.H. Liao, J. Lumin. 121, 57 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Keereeta, T. Thongtem, S. Thongtem, Superlattices Microstruct. 69, 253 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Keereeta, T. Thongtem, S. Thongtem, Mater. Lett. 68, 265 (2012)CrossRefGoogle Scholar
  18. 18.
    A. John Peter, I.B. Shameem Banu, J. Thirumalai, S.P. David, J. Mater. Sci. Mater. Electron. 24, 4503 (2013)Google Scholar
  19. 19.
    G.K. Zhang, S.J. Yu, Y.Q. Yang, W. Jiang, S.M. Zhang, B.B. Huang, J. Cryst. Growth 312, 1866 (2010)CrossRefGoogle Scholar
  20. 20.
    L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu, J. Li, A. Andrés, A. Beltrán, Polyhedron 54, 13 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Phuruangrat, T. Thongtem, S. Thongtem, J. Alloys Compd. 481, 568 (2009)CrossRefGoogle Scholar
  22. 22.
    Q.H. Zeng, P. He, H.B. Liang, M.L. Gong, Q. Su, Mater. Chem. Phys. 118, 76 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Xie, X.M. Yuan, F.X. Wang, Y. Shi, J. Li, L. Liu, Z.F. Mu, J. Alloys Compd. 501, 124 (2010)CrossRefGoogle Scholar
  24. 24.
    J.P. Rainho, L.D. Carlos, J. Rocha, J. Lumin. 87–89, 1083 (2000)CrossRefGoogle Scholar
  25. 25.
    M. Thomas, P.P. Rao, M. Deepa, M. Chandran, P. Koshy, J. Solid State Chem. 182, 203 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Tian, X.H. Qi, X.W. Wu, R.N. Hua, B.J. Chen, J. Phys. Chem. C 113, 10767 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Daqiang Hu
    • 1
  • Weiliang Huan
    • 1
  • Ying Wang
    • 1
  • Yandong Wang
    • 1
  1. 1.School of ScienceUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations