Skip to main content
Log in

Effect of titanyl phthalocyanine doping on opto-electrical properties of Alq3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The titanyl phthalocyanine (TiOPc) was doped in tris (8-hydroxy quinolinato) aluminum (Alq3) with concentration of 1, 2 and 3 % by weight. The thin film of undoped and doped Alq3 was studied extensively for optical and electrical properties. The refractive index of the studied material was found in the range of 1.5–2.07 for 300–1000 nm wavelength. The Urbach tail energy decreases by increase of doping concentration. The PL quenching ratio increases with doping that attribute charge transfer from Alq3 to the TioPc. The electrical properties of the thin film were studied by impedance spectroscopy over a frequency range of 100 Hz–1 MHz. The undoped and doped Alq3 shows single relaxation process. The Cole–Cole plots of undoped and doped device can be represented by a single parallel resistance R P and capacitance C P network with a series resistance R S . The value of R P and C P at zero bias are ~146 kΩ, 87 kΩ, 814 Ω and 22 kΩ and 68, 9, 30 and 29 nF for undoped, 1, 2 and 3 % doping, respectively. The resistance R P decreases with applied bias whereas the capacitance C P remains almost constant. At high frequency, the AC conduction of the film follows the universal power law and the onset frequency increases with increasing bias voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  Google Scholar 

  2. S.R. Forrest, Nature 428, 911 (2004)

    Article  Google Scholar 

  3. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  Google Scholar 

  4. M. Ramar, C.K. Suman, R. Manomozhi, R. Ahamed, R. Srivastava, RSC Adv. 4, 32651 (2014)

    Article  Google Scholar 

  5. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 80, 139 (2002)

    Article  Google Scholar 

  6. C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, C.H. Chen, Appl. Phys. Lett. 89, 253504 (2006)

    Article  Google Scholar 

  7. X.L. Zhu, J.X. Sun, H.J. Peng, Z.G. Meng, M. Wong, H.S. Kwoka, Appl. Phys. Lett. 87, 153508 (2005)

    Article  Google Scholar 

  8. D. Grozea, A. Turak, Y. Yuan, S. Han, Z.H. Lu, W.Y. Kim, J. Appl. Phys. 101, 033522 (2007)

    Article  Google Scholar 

  9. K.L. Tang, S.W. Tsang, K.K. Tsang, S.C. Tse, S.K. So, J. Appl. Phys. 102, 093705 (2007)

    Article  Google Scholar 

  10. S.W. Tsang, Z.H. Lu, Y. Tao, Appl. Phys. Lett. 90, 132115 (2007)

    Article  Google Scholar 

  11. M.T. Hsieh, C. Chang, J.F. Chen, C.H. Chen, Appl. Phys. Lett. 89, 103510 (2006)

    Article  Google Scholar 

  12. M.A. Lampertand, P. Mark, Current Injection in Solids (Academic, New York, 1970)

    Google Scholar 

  13. B.K. Crone, I.H. Campbell, P.S. Davids, D.L. Smith, C.J. Neef, J.P. Ferraris, J. Appl. Phys. 86, 5767 (1999)

    Article  Google Scholar 

  14. D. Yokoyama, K. Nakayama, T. Otani, J. Kido, Adv. Mater. 24, 6368 (2012)

    Article  Google Scholar 

  15. M.S. Dresselhaus, G. Dresslhaus, Annu. Rev. Mater. Sci. 25, 487 (1995)

    Article  Google Scholar 

  16. H. Kataura, Y. Endo, Y. Achiba, K. Kikuchi, T. Hanyu, S. Yamaguchi, J. Phys. Chem. Solids 58, 1913 (1997)

    Article  Google Scholar 

  17. T. Gotoh, S. Nonomura, S. Hirata, S. Nitta, Appl. Surf. Sci. 113/114, 278 (1997)

    Article  Google Scholar 

  18. W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Qian, W. Li, J. Appl. Phys. 104, 459 (1996)

    Article  Google Scholar 

  19. H. Habuchi, S. Nitta, D.X. Han, S. Nonomura, J. Appl. Phys. 87, 8580 (2000)

    Article  Google Scholar 

  20. A.D.Z. Mendaza, J. Bergqvist, O. Bäcke, C. Lindqvist, R. Kroon, F. Gao, M.R. Andersson, E. Olsson, O. Inganäs, C. Müller, J. Mater. Chem. A 2, 14354–14359 (2014)

    Article  Google Scholar 

  21. R. Von Hipple, Dielectrics and Waves (Wiley, New York, 1954)

    Google Scholar 

  22. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1444 (1972)

    Article  Google Scholar 

  23. K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  24. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  25. S.M. Soosen, A. Chandran, J. Koshy, K.C. George, J. Appl. Phys. 109, 113702 (2011)

    Article  Google Scholar 

  26. C. Shen, A. Kahn, J. Schwartz, J. Appl. Phys. 89, 449 (2001)

    Article  Google Scholar 

  27. V.I. Arkhipov, P. Heremans, E.V. Emelianova, H. Bässler, Phys. Rev. B 71, 045214 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully recognize the financial support from the Council of Scientific and Industrial Research (CSIR), India for funding research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Suman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramar, M., Yadav, V., Srivastava, R. et al. Effect of titanyl phthalocyanine doping on opto-electrical properties of Alq3 thin films. J Mater Sci: Mater Electron 26, 7165–7173 (2015). https://doi.org/10.1007/s10854-015-3341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3341-4

Keywords

Navigation