Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 7165–7173 | Cite as

Effect of titanyl phthalocyanine doping on opto-electrical properties of Alq3 thin films



The titanyl phthalocyanine (TiOPc) was doped in tris (8-hydroxy quinolinato) aluminum (Alq3) with concentration of 1, 2 and 3 % by weight. The thin film of undoped and doped Alq3 was studied extensively for optical and electrical properties. The refractive index of the studied material was found in the range of 1.5–2.07 for 300–1000 nm wavelength. The Urbach tail energy decreases by increase of doping concentration. The PL quenching ratio increases with doping that attribute charge transfer from Alq3 to the TioPc. The electrical properties of the thin film were studied by impedance spectroscopy over a frequency range of 100 Hz–1 MHz. The undoped and doped Alq3 shows single relaxation process. The Cole–Cole plots of undoped and doped device can be represented by a single parallel resistance R P and capacitance C P network with a series resistance R S . The value of R P and C P at zero bias are ~146 kΩ, 87 kΩ, 814 Ω and 22 kΩ and 68, 9, 30 and 29 nF for undoped, 1, 2 and 3 % doping, respectively. The resistance R P decreases with applied bias whereas the capacitance C P remains almost constant. At high frequency, the AC conduction of the film follows the universal power law and the onset frequency increases with increasing bias voltages.


Bias Voltage High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Organic Semiconductor Cole Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully recognize the financial support from the Council of Scientific and Industrial Research (CSIR), India for funding research work.


  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  2. 2.
    S.R. Forrest, Nature 428, 911 (2004)CrossRefGoogle Scholar
  3. 3.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)CrossRefGoogle Scholar
  4. 4.
    M. Ramar, C.K. Suman, R. Manomozhi, R. Ahamed, R. Srivastava, RSC Adv. 4, 32651 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 80, 139 (2002)CrossRefGoogle Scholar
  6. 6.
    C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, C.H. Chen, Appl. Phys. Lett. 89, 253504 (2006)CrossRefGoogle Scholar
  7. 7.
    X.L. Zhu, J.X. Sun, H.J. Peng, Z.G. Meng, M. Wong, H.S. Kwoka, Appl. Phys. Lett. 87, 153508 (2005)CrossRefGoogle Scholar
  8. 8.
    D. Grozea, A. Turak, Y. Yuan, S. Han, Z.H. Lu, W.Y. Kim, J. Appl. Phys. 101, 033522 (2007)CrossRefGoogle Scholar
  9. 9.
    K.L. Tang, S.W. Tsang, K.K. Tsang, S.C. Tse, S.K. So, J. Appl. Phys. 102, 093705 (2007)CrossRefGoogle Scholar
  10. 10.
    S.W. Tsang, Z.H. Lu, Y. Tao, Appl. Phys. Lett. 90, 132115 (2007)CrossRefGoogle Scholar
  11. 11.
    M.T. Hsieh, C. Chang, J.F. Chen, C.H. Chen, Appl. Phys. Lett. 89, 103510 (2006)CrossRefGoogle Scholar
  12. 12.
    M.A. Lampertand, P. Mark, Current Injection in Solids (Academic, New York, 1970)Google Scholar
  13. 13.
    B.K. Crone, I.H. Campbell, P.S. Davids, D.L. Smith, C.J. Neef, J.P. Ferraris, J. Appl. Phys. 86, 5767 (1999)CrossRefGoogle Scholar
  14. 14.
    D. Yokoyama, K. Nakayama, T. Otani, J. Kido, Adv. Mater. 24, 6368 (2012)CrossRefGoogle Scholar
  15. 15.
    M.S. Dresselhaus, G. Dresslhaus, Annu. Rev. Mater. Sci. 25, 487 (1995)CrossRefGoogle Scholar
  16. 16.
    H. Kataura, Y. Endo, Y. Achiba, K. Kikuchi, T. Hanyu, S. Yamaguchi, J. Phys. Chem. Solids 58, 1913 (1997)CrossRefGoogle Scholar
  17. 17.
    T. Gotoh, S. Nonomura, S. Hirata, S. Nitta, Appl. Surf. Sci. 113/114, 278 (1997)CrossRefGoogle Scholar
  18. 18.
    W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Qian, W. Li, J. Appl. Phys. 104, 459 (1996)CrossRefGoogle Scholar
  19. 19.
    H. Habuchi, S. Nitta, D.X. Han, S. Nonomura, J. Appl. Phys. 87, 8580 (2000)CrossRefGoogle Scholar
  20. 20.
    A.D.Z. Mendaza, J. Bergqvist, O. Bäcke, C. Lindqvist, R. Kroon, F. Gao, M.R. Andersson, E. Olsson, O. Inganäs, C. Müller, J. Mater. Chem. A 2, 14354–14359 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Von Hipple, Dielectrics and Waves (Wiley, New York, 1954)Google Scholar
  22. 22.
    M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1444 (1972)CrossRefGoogle Scholar
  23. 23.
    K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  24. 24.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  25. 25.
    S.M. Soosen, A. Chandran, J. Koshy, K.C. George, J. Appl. Phys. 109, 113702 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Shen, A. Kahn, J. Schwartz, J. Appl. Phys. 89, 449 (2001)CrossRefGoogle Scholar
  27. 27.
    V.I. Arkhipov, P. Heremans, E.V. Emelianova, H. Bässler, Phys. Rev. B 71, 045214 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)CSIR-National Physical Laboratory CampusNew DelhiIndia
  2. 2.CSIR-Network of Institutes for Solar EnergyCSIR-National Physical Laboratory CampusNew DelhiIndia

Personalised recommendations