Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 7109–7116 | Cite as

Study of dielectric relaxation processes in printable zinc oxide films on transparent substrates

  • Sharmistha Paul
  • Paul G. Harris
  • Ashwani K. Sharma
  • Asim K. Ray


AC impedance spectroscopic measurements have been performed on sol–gel derived zinc oxide (ZnO) films on transparent fluorine-doped tin oxide coated glass substrates in the frequency range 10−2 to 106 Hz over the temperature range −185 to +25 °C (88–298 K). The relaxation behaviour of the nanocrystal line ZnO thin film can be described in terms of the Debye model giving an interpretation of the semi-circular relaxation phenomenon within the given temperature range. Two different relaxation times were obtained from impedance (Z) and electric modulus (M) studies of the devices and the multiple hopping of charge carriers between trap sites in grain and grain-boundary regions is believed to be responsible for charge transport. The values of activation energies for trap levels obtained from AC conductivity study are 0.0153 and 0.0487 eV which are close to the activation energies obtained from DC electrical measurement for temperature region between 88 and 178 K and 179 and 298 K, respectively.


Electric Modulus Relaxation Time Constant Dielectric Relaxation Spectroscopy Complex Electric Modulus Wurtzite Hexagonal Polycrystalline Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant No. FA8655-08-1-3056.


  1. 1.
    A.B. Djurisic, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron 34(4), 191 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Opel, S.T.B. Goennenwein, M. Althammer, K.W. Nielsen, E.M. Karrer-Muller, S. Bauer, K. Senn, C. Schwark, C. Weier, G. Guntherodt, B. Beschoten, R. Gross, Phys. Status Solidi B-Basic Solid State Phys. 251(9), 1700 (2014)CrossRefGoogle Scholar
  3. 3.
    J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Nano Lett. 11(7), 2829 (2011)CrossRefGoogle Scholar
  4. 4.
    Q. Yang, Y.P. Wu, Y. Liu, C.F. Pan, Z.L. Wang, Phys. Chem. Chem. Phys. 16(7), 2790 (2014)CrossRefGoogle Scholar
  5. 5.
    S.Q. Bi, F.L. Meng, Y.Z. Zheng, X. Han, X. Tao, J.F. Chen, J. Power Sources 272, 485 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Huang, Z.G. Yin, Q.D. Zheng, Energy Environ. Sci. 4(10), 3861 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Ahmad, N. Tripathy, N.K. Jang, G. Khang, Y.B. Hahn, Sens. Actuator B-Chem. 206, 146 (2015)CrossRefGoogle Scholar
  8. 8.
    C.-H. Yang, Y. Kuo, C.-H. Lin, Appl. Phys. Lett. 96(19), 192106 (2010)CrossRefGoogle Scholar
  9. 9.
    Y.L. Huang, S.P. Chiu, Z.X. Zhu, Z.Q. Li, J.J. Lin, J. Appl. Phys. 107, 063715 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Natsume, H. Sakata, T. Hirayama, Phys. Status Solidi (a) 148, 485 (1995)CrossRefGoogle Scholar
  11. 11.
    A. K. Jonscher, J. Phys. D: Appl. Phys. 32(14), R57 (1999)Google Scholar
  12. 12.
    J.R. Macdonald, Impedance Spectroscopy-Emphasizing Solid Materials and Systems (Wiley, New York, 1987)Google Scholar
  13. 13.
    M. Li, A. Fetiera, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)CrossRefGoogle Scholar
  14. 14.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, Singapore, 1990)Google Scholar
  15. 15.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 19, 1484 (1951)CrossRefGoogle Scholar
  16. 16.
    S. Havnhk, S. Negami, Polymer 8, 161 (1967)CrossRefGoogle Scholar
  17. 17.
    E. Ziegler, A. Heirich, H. Opperman, G. Stover, Phys. Status Solidi (a) 66, 635 (1981)CrossRefGoogle Scholar
  18. 18.
    X. Zhao, J. Li, H. Li, S. Li, J. Appl. Phys. 111, 124106 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Paul, P.G. Harris, C. Pal, A.K. Sharma, A.K. Ray, Mater. Lett. 130, 40 (2014)CrossRefGoogle Scholar
  20. 20.
    S.P. Heluani, G. Braunstein, M. Villafuerte, G. Simonelli, S. Duhalde, Thin Solid Films 515(4), 2379 (2006)CrossRefGoogle Scholar
  21. 21.
    C.C. Lien, C.Y. Wu, Z.Q. Li, J.J. Lin, J. Appl. Phys. 110(6), 063706 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72(9), 4203 (1992)CrossRefGoogle Scholar
  23. 23.
    P.P. Sahay, S. Tewari, R.K. Nath, S. Jha, M. Shamsuddin, J. Mater. Sci. 43, 4534 (2008)CrossRefGoogle Scholar
  24. 24.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  25. 25.
    B.K. Singh, B. Kumar, Cryst. Res. Technol. 45, 1003 (2010)CrossRefGoogle Scholar
  26. 26.
    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 98(3), 225 (2003)CrossRefGoogle Scholar
  27. 27.
    E. Iguchi, K. Idea, W.H. Jung, Phys. Rev. B 54, 17431 (1996)CrossRefGoogle Scholar
  28. 28.
    R. Tripathi, A. Kumar, C. Bharati, T.P. Sinha, Curr. Appl. Phys. 10(2), 676 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)CrossRefGoogle Scholar
  30. 30.
    A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)Google Scholar
  31. 31.
    R.H. Chen, R.Y. Chang, C.S. Shem, Solid State Ion. 177, 2857 (2006)CrossRefGoogle Scholar
  32. 32.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sharmistha Paul
    • 1
    • 3
  • Paul G. Harris
    • 1
  • Ashwani K. Sharma
    • 2
  • Asim K. Ray
    • 1
  1. 1.Institute of Materials and ManufacturingBrunel University LondonUxbridgeUK
  2. 2.Res Laboratory, Space Vehicles Directorate, Se Kirtland AFBUSAFAlbuquerqueUSA
  3. 3.West Bengal State Council of Science and TechnologyKolkataIndia

Personalised recommendations