Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 6945–6953 | Cite as

Preparation of highly expanded graphene with large surface area and its additional conductive effect for EDLC performance

  • Kefayat Ullah
  • Ick-Jun Kim
  • Sun-hye Yang
  • Won-Chun Oh


Expanded graphene (EG) has been produced using fast oxidation/intercalation process. The as prepared EG were then used as conductive additive to study the electrochemical properties of activated carbon based electric double layered supercapacitors (EDLCs). The physiochemical properties of EG were studied using scanning electron microscopy, Raman spectroscopic techniques, atomic force microscopy and energy dispersive X-ray analysis. The electrochemical properties were studied using charge/discharge cyclic voltammetry and electrochemical impedance spectroscopy. All the electrochemical tests were carried out in 1 M, TEA BF4 in acetonitrile as a suitable electrolyte for our AC based supercapacitors. Electrochemical test reveals that EG greatly affect the conductivity of the ions through the AC/EG interface. The specific capacitance remains the same for smaller values of EG in the composites electrodes. These results also evident the optimum loading of graphene in the future graphene based EDLCs.


Activate Carbon Graphene Oxide Specific Capacitance Graphene Sheet Expand Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the next generation secondary battery R&D program of MOTIE/KEIT. [10042575, Development of 5 kW Zn-air battery for EV and 3.3 V–1000 F pouch type high-power supercapacitor].


  1. 1.
    W. Chen, C. Xia, H.N. Alshareef, Graphene based integrated tandem supercapacitors fabricated directly on separators. Nano Energy 15, 1–8 (2015)CrossRefGoogle Scholar
  2. 2.
    P.L. Huang, X.F. Luo, Y.Y. Peng, N.W. Pu, M.D. Ger, C.H. Yang, T.Y. Wud, J.K. Chang, Ionic liquid electrolytes with various constituent ions for graphene-based supercapacitors. Electrochim. Acta 161, 371–377 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760–1763 (2006)CrossRefGoogle Scholar
  6. 6.
    S.M. Saufi, A.F. Ismail, Fabrication of carbon membranes for gas separation, a review. Carbon 42, 241–259 (2004)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010)CrossRefGoogle Scholar
  9. 9.
    P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6(20), 12120–121229 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Cai, M. Zhou, D. Ren, G. Han, S. Guan, J. Power Sources 231, 197 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Guo, Z.Q. Shi, M.M. Chen, C.Y. Wang, J. Power Sources 252, 235 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Choi, P.N. Kumta, Nanocrystalline tin derived by a two-step halide approach for electrochemical capacitors. J. Electrochem. Soc. 153, A2298–A2303 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Chem. Phys. Lett. 361, 35 (2002)CrossRefGoogle Scholar
  14. 14.
    V. Ruiz, C. Blanco, E.R. Pinero, V. Khomenko, F. Beguin, R. Santamarı, Electrochim. Acta 52, 4969 (2007)CrossRefGoogle Scholar
  15. 15.
    C. Peng, S.W. Zhang, D. Jewell, Prog. Nat. Sci. 18, 777 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousaviae, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. (2015). doi: 10.1039/C4CS00316K. Review Article Google Scholar
  18. 18.
    G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Wang, W.J. Zou, B.G. Quan, A.F. Yu, H.P. Wu, P. Jiang, Z.X. Wei, Adv. Energy Mater. 1, 1068–1072 (2011)CrossRefGoogle Scholar
  21. 21.
    N. Kurra, N.A. Alhebshi, H.N. Alshareef, Adv. Energy Mater. 5, 1401303 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Zhou, H. Zhang, Q. Zhao, X. Wang, J. Li, F. Wang, Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon 52, 440–450 (2013)CrossRefGoogle Scholar
  23. 23.
    Q. Zhang, Y. Li, Y. Feng, W. Feng, Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim. Acta 90, 95–100 (2013)CrossRefGoogle Scholar
  24. 24.
    X.-M. Feng, R.-M. Li, Y.-W. Ma, R.-F. Chen, N.-E. Shi, Q.-L. Fan, W. Huang, Onestep electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011)CrossRefGoogle Scholar
  25. 25.
    K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho, W.-C. Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2–graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques. Ultrason Sonochem 21(5), 1849–1857 (2014)CrossRefGoogle Scholar
  26. 26.
    M.H. Pournaghi Azar, B. Habibi, Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: a comparative characterization of the polyaniline deposited electrodes. Electrochim. Acta 52, 4222–4230 (2007)CrossRefGoogle Scholar
  27. 27.
    R.L. Hand, R.F. Nelson, Anodic oxidation pathways of N-alkylanilines. J. Am. Chem. Soc 96, 850–860 (1974)CrossRefGoogle Scholar
  28. 28.
    W.C. Chen, T.C. Wen, A. Gopalan, Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth. Met. 128, 179–189 (2002)CrossRefGoogle Scholar
  29. 29.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Huang, J. Long, M. Zhong, J. Jiang, X. Ye, Z. Lin, L. Li, The effects of low power density CO2 laser irradiation on graphene. Appl. Surf. Sci. 273, 502 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T.S. Wee, Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008)CrossRefGoogle Scholar
  32. 32.
    Kefayat Ullah, Zhu Lei, Shu Ye, Asghar Ali, Oh Won-Chun, Microwave synthesis of a CoSe2/graphene–TiO2 heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents. RSC Adv. 5, 18841 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)CrossRefGoogle Scholar
  34. 34.
    C. He, S.P. Jiang, P.K. Shen, Large-scale and rapid synthesis of disk-shaped and nano-sized graphene. Sci. Rep (2013). doi: 10.1038/srep02144 Google Scholar
  35. 35.
    W. Tang, L. Peng, C. Yuan, J. Wang, S. Mo, C. Zhao, Y. Youhai, Y. Min, A.J. Epstein, Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth. Met. 202, 140–146 (2015)CrossRefGoogle Scholar
  36. 36.
    L. Zhu, A. Ali, S. Ye, K. Ullah, C.S. Lim, W.C. Oh, Thermal and physical performance of heat sink for light-emitting diode improved with expanded graphite. Asian J. Chem. 27(6), 2298–2302 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Yun, D. Kim, G. Lee, J.S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79, 156–164 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Hamoudi, Carbon-metal nanosheets from the water-hexane interface. J. Mater. Chem. C 3(15), 3636–3644 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Li, Y. Liu, B. Lin, Y. Sun, H. Yang, X. Zhang, Graphene/metal oxide composites as electrode material for supercapacitors. Prog. Chem. 27(4), 404–415 (2015)Google Scholar
  40. 40.
    S.M. Li, S.Y. Yang, Y.S. Wang, H.P. Tsai, H.W. Tien, S.T. Hsiao, W.H. Liao, C.L. Chang, C.C.M. Ma, C.C. Hu, N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J. Power Sources 278, 218–229 (2015)CrossRefGoogle Scholar
  41. 41.
    H.S. Park, M.H. Lee, R.Y. Hwang, O.K. Park, K. Jo, T. Lee, B.S. Kim, H.K. Song, Kinetically enhanced pseudo capacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy 3, 1–9 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Xiao, S. Li, H. Wei, D. Sun, Y. Wu, G. Jin, F. Wang, Y. Zou, Synthesis and characterization of VO2(B)/graphene nanocomposite for supercapacitors. J. Mater. Sci.: Mater. Electron. 26(6), 4226–4233 (2015)Google Scholar
  43. 43.
    G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochim. Acta 171, 13–22 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Ullah, S. Ye, L. Zhu, S.G. Kim, B.J. Lee, E.H. Yoon, Y.R. Kim, B.S. Kim, W.C. Oh, Additional materials effect for improved electrochemical performance of activated carbon fiber based electric double layer capacitors. Asian J. Chem. 27(6), 2260–2266 (2015)CrossRefGoogle Scholar
  45. 45.
    A.I. Inamdar, Y.S. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J. Power Sources 196(4), 2393–2397 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kefayat Ullah
    • 1
  • Ick-Jun Kim
    • 2
  • Sun-hye Yang
    • 2
  • Won-Chun Oh
    • 1
  1. 1.Department of Advanced Materials Science and EngineeringHanseo UniversitySeosan-siKorea
  2. 2.Korea Electrotechnology Research InstituteChangwon-siKorea

Personalised recommendations