Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 6892–6896 | Cite as

Hydrothermal synthesis of NaY(WO4)2:Tb3+ powders with assistance of surfactant and luminescence properties

  • Da-Xi Sun


NaY(WO4)2:Tb3+ powders with different sizes and morphologies were synthesized by the hydrothermal process. The surfactants and reaction times have obvious effects on sizes and morphologies of samples. When there is the addition of an equimolar combination of oleic acid and oleylamine and the reaction time of 10 h, uniform morphology of octahedron can be formed. As indicated by the FTIR spectra, the enhanced adsorption of oleic acid in the presence of oleylamine leads to the good formation of octahedral NaY(WO4)2:Tb3+ powders. Surfactants will selectively absorb on the surface of the growing particles via physical and chemical effects, which leads to different growing rates along corresponding directions and induces the formation of octahedral morphology. Under the ultraviolet excitation, NaY(WO4):Tb3+ powders show dominant green emission originating from the 5D4 → 7F5 transition of Tb3+ ions.


Surfactant Oleic Acid Green Emission Oleylamine Na2WO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Dubey, J. Kaur, S. Agrawai, N.S. Suryanarayana, K.V.R. Murthy, Superlattices Microstruct. 67, 156 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, T. Thongtem, Superlattices Microstruct. 67, 197 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Yang, H. Tang, Z. Guo, Superlattices Microstruct. 80, 188 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Lu, J. Mater. Sci. Mater. Electron. 25, 952 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Ju, J. Liu, B. Wang, X. Tao, Y. Ma, S. Xu, Ceram. Int. 39, 857 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Wei, Q. Jia, Superlattices Microstruct. 82, 11 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, P. Yang, J. Alloy. Compd. 529, 140 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Yang, H. Feng, X. Zhang, J. Mater. Sci. Mater. Electron. 26, 229 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Zheng, H. You, K. Liu, Y. Song, G. Jia, Y. Huang, M. Yang, L. Zhang, G. Ning, CrystEngComm 13, 3001 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Jiang, F. Cui, J. Mater. Sci. Mater. Electron. 25, 5362 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Bu, Z. Chen, F. Chen, J. Shi, J. Phys. Chem. C 113, 12176 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 2 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Mourdikoudis, L.M. Liz-Marzan, Chem. Mater. 25, 1465–1476 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Xu, J. Zhuang, X. Wang, J. Am. Chem. Soc. 130, 12527 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Perets, R.Z. Shneck, R. Gajic, A. Golubovic, Z. Burshtein, Vib. Spectrosc. 49, 110 (2009)CrossRefGoogle Scholar
  16. 16.
    K. Ahrenstorf, H. Heller, A. Komowski, J.A.C. Broekaert, H. Weller, Adv. Funct. Mater. 18, 3850 (2008)CrossRefGoogle Scholar
  17. 17.
    L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, B. Dragnea, Chem. Mater. 19, 3624 (2007)CrossRefGoogle Scholar
  18. 18.
    X. Lu, H.-Y. Tuan, J. Chen, Z.-Y. Li, B.A. Korgel, Y. Xia, J. Am. Chem. Soc. 129, 1733 (2007)CrossRefGoogle Scholar
  19. 19.
    X.Y. Sun, X.G. Li, X.D. Sun, J. He, B.S. Wang, J. Mater. Sci. Mater. Electron. 25, 1647 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Inorg. Chem. 53, 11457 (2014)CrossRefGoogle Scholar
  21. 21.
    A.J. Peter, I.B. Shameem, Banu. J. Mater. Sci. Mater. Electron. 25, 2771 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Equipment Engineering DepartmentSichuan College of Architectural TechnologyDeyangChina

Personalised recommendations