Effect of precursors on the microstructural, optical, electrical and electrochromic properties of WO3 nanocrystalline thin films

  • Ramnayan Mukherjee
  • P. P. Sahay


Spray-deposited tungsten oxide (WO3) nanocrystalline thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy in order to study the precursor induced changes in their structural and morphological properties. The crystallite size and the root mean square surface roughness have been found to be minimum for the WO3 thin films prepared using ammonium tungstate. The optical and spectral studies of the films were carried out using UV–visible spectroscopy and photoluminescence spectroscopy. Electrical transport properties of the films were studied by measuring the film resistivity as a function of temperature. Electrochromic studies of the WO3 films were carried out from cyclic voltammetry, chronocoulometry and chronoamperometry measurements. The films grown using ammonium tungstate exhibit high electrochromic reversibility (~91 %) and large charge storage capacity. The cyclic voltammograms of the films do not change even after 50 scan cycles, confirming the electrochromic stability in the WO3 films. Overall, the film prepared using ammonium tungstate may be a suitable candidate for electrochromic devices.


Spray Pyrolysis Cyclic Voltammetry Curve Tungsten Oxide Tungsten Bronze Electrochromic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their gratitude to Centre for Interdisciplinary Research, MNNIT Allahabad, India for providing XRD and AFM facilities. They are grateful to Professor P. Chakrabarti, Director, MNNIT, India for providing electrochemical study measurement facility. They are also thankful to Professor M. Aslam, Department of Metallurgical Engineering and Materials Science, IIT Bombay, India for extending Raman, SEM and PL measurement faculties. Financial support provided by the University Grants Commission, New Delhi, India, in the form of a major research project [No. 40-450/2011 (SR)] is gratefully acknowledged.


  1. 1.
    H.M.A. Soliman, A.B. Kashyout, M.S.E. Nouby, A.M. Abosehly, J. Mater. Sci. Mater. Electron. 21, 1313 (2010)CrossRefGoogle Scholar
  2. 2.
    P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  3. 3.
    G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, C.D. Gu, Sol. Energy Mater. Sol. Cells 124, 103 (2014)CrossRefGoogle Scholar
  4. 4.
    V.V. Kondalkar, R.R. Kharade, S.S. Mali, R.M. Mane, P.B. Patil, P.S. Patil, S. Choudhury, P.N. Bhosale, Superlattices Microstruct. 73, 290 (2014)CrossRefGoogle Scholar
  5. 5.
    S.R. Bathe, P.S. Patil, Solid State Ionics 179, 314 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Huang, Y. Shen, L. Zhao, M. Yan, Adv. Powder Technol. 23, 211–214 (2012)CrossRefGoogle Scholar
  7. 7.
    S.M.A. Durrani, E.E. Khawaja, M.A. Salim, M.F. Al-Kuhaili, A.M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002)CrossRefGoogle Scholar
  8. 8.
    J.Y. Luo, W. Li, F. Chen, X.X. Chen, W.D. Li, H.Y. Wu, Y.J. Gao, Q.G. Zeng, Sens. Actuators B 197, 81 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Wang, Y. Gan, X. Dong, S. Peng, L. Dong, Y. Wang, J. Mater. Sci. Mater. Electron. 23, 2229 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Zeng, Y. Li, H. Zhang, J. Mater. Sci. Mater. Electron. 25, 1512 (2014)CrossRefGoogle Scholar
  11. 11.
    O. Berger, T. Hoffmann, W.-J. Fischer, V. Melev, J. Mater. Sci. Mater. Electron. 15, 483 (2004)CrossRefGoogle Scholar
  12. 12.
    A.J. More, R.S. Patil, D.S. Dalavi, S.S. Mali, C.K. Hong, M.G. Gang, J.H. Kim, P.S. Patil, Mater. Lett. 134, 298 (2014)CrossRefGoogle Scholar
  13. 13.
    S.B. Kulkarni, A.T. Mane, S.T. Navale, P.S. Kulkarni, R.N. Mulik, V.B. Patil, J. Mater. Sci. Mater. Electron. 26, 1087 (2015)CrossRefGoogle Scholar
  14. 14.
    C.-P. Li, C. Engtrakul, R.C. Tenent, C.A. Wolden, Sol. Energy Mater. Sol. Cells 132, 6 (2015)CrossRefGoogle Scholar
  15. 15.
    L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Mater. Chem. Phys. 140, 49 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Paipitak, W. Techitdheera, S. Porntheeraphat, W. Pecharapa, Energy Procedia 34, 689 (2013)CrossRefGoogle Scholar
  17. 17.
    V. Bornand, P. Papet, E. Philippot, J. Mater. Sci. Lett. 18, 483 (1999)CrossRefGoogle Scholar
  18. 18.
    S.B. Weber, H.L. Lein, T. Grande, M.A. Einarsrud, Surf. Coat. Technol. 221, 53 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Verma, A.K. Bakhshi, S.A. Agnihotry, Electrochim. Acta 51, 4639 (2006)CrossRefGoogle Scholar
  20. 20.
    D.V. Dharmadhikari, S.K. Nikam, A.A. Athawale, J. Alloys Compd. 590, 486 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Mukherjee, A. Kushwaha, P.P. Sahay, Electron. Mater. Lett. 10, 401 (2014)CrossRefGoogle Scholar
  22. 22.
    C.M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Mater. Sci. Semicond. Process. 13, 1 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Li, F. Lin, R.M. Richards, C. Engtrakul, R.C. Tenent, C.A. Wolden, Sol. Energy Mater. Sol. Cells 121, 163 (2014)CrossRefGoogle Scholar
  24. 24.
    W.H. Lai, L.G. Teoh, Y.H. Su, J. Shieh, M.H. Hon, J. Alloys Compd. 438, 247 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Badilescu, P.V. Ashrit, Solid State Ionics 158, 187 (2003)CrossRefGoogle Scholar
  26. 26.
    K. Miyake, H. Kaneko, M. Sano, N. Suedomi, J. Appl. Phys. 55, 2747 (1984)CrossRefGoogle Scholar
  27. 27.
    H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, J. Alloys Compd. 617, 609 (2014)CrossRefGoogle Scholar
  28. 28.
    P.V. Ashrit, Thin Solid Films 385, 81 (2001)CrossRefGoogle Scholar
  29. 29.
    J. M. Wang, X.W. Sun, Z. Jiao, Materials 3, 5029 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Li, R.C. Tenent, A.C. Dillon, R.M. Morrish, C.A. Wolden, Electrochem Lett 1, H24 (2012)CrossRefGoogle Scholar
  31. 31.
    Z. Jiao, X.W. Sun, J. Wang, L. Ke, H.V. Demir, J. Phys. D Appl. Phys. 43, 285501 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Zhang, S.A. Wessel, K. Colbow, Thin Solid Films 185, 265 (1990)CrossRefGoogle Scholar
  33. 33.
    R. Mukherjee, P.P. Sahay, J. Mater. Sci. Mater. Electron. 26, 2679 (2015)CrossRefGoogle Scholar
  34. 34.
    M.A. Wahab, Solid State Physics, 2nd edn. (Narosa Publishing House, New Delhi, 2010), p. 32Google Scholar
  35. 35.
    R. Senthilkumar, G. Ravi, C. Sekar, M. Arivanandhan, M. Navaneethan, Y. Hayakawa, J. Mater. Sci. Mater. Electron. 26, 1389 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued, P.V. Ashrit, J. Non-Cryst. Solids 345&346, 500 (2004)CrossRefGoogle Scholar
  37. 37.
    A.L. Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)CrossRefGoogle Scholar
  38. 38.
    B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Sol. Energy Mater. Sol. Cells 88, 199 (2005)CrossRefGoogle Scholar
  39. 39.
    Y. Lei, W.K. Chim, H.P. Sun, G. Wilde, Appl. Phys. Lett. 86, 103106 (2005)CrossRefGoogle Scholar
  40. 40.
    V.B. Kumar, D. Mohanta, Bull. Mater. Sci. 34, 435 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Dudita, L. Isac, A. Duta, Bull. Mater. Sci. 35, 997 (2012)CrossRefGoogle Scholar
  42. 42.
    D. Beena, K.J. Lethy, R. Vinodkumar, V.P.M. Pillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, 2005)Google Scholar
  44. 44.
    M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Manfredi, C. Paracchini, G.C. Salviati, G. Schianchi, Thin Solid Films 79, 161 (1981)CrossRefGoogle Scholar
  46. 46.
    S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255 (2012)CrossRefGoogle Scholar
  47. 47.
    Y.M. Zhao, W.B. Hu, Y.D. Xia, E.F. Smith, Y.Q. Zhu, C.W. Dunnill, D.H. Gregory, J. Mater. Chem. 17, 4436 (2007)CrossRefGoogle Scholar
  48. 48.
    B.M. Sinelnikov, E.V. Sokolenko, V.Y. Zvekov, Inorg. Mater. 32, 999 (1996)Google Scholar
  49. 49.
    H.F. Wolf, Semiconductors (Wiley-Interscience, New York, 1971)Google Scholar
  50. 50.
    R. Mukherjee, C.S. Prajapati, P.P. Sahay, J. Mater. Eng. Perform. 23, 3141 (2014)CrossRefGoogle Scholar
  51. 51.
    P.S. Patil, P.R. Patil, S.S. Kamble, S.H. Pawar, Sol. Energy Mater. Sol. Cells 60, 143 (2000)CrossRefGoogle Scholar
  52. 52.
    J.S.E.M. Svensson, C.G. Granqvist, Appl. Phys. Lett. 45, 828 (1984)CrossRefGoogle Scholar
  53. 53.
    H. Kamal, A.A. Akl, K. Abdel-Hady, Phys. B 349, 192 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations