Advertisement

Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: synthesis and characterization

  • Tahereh Gholami
  • Mehdi Bazarganipour
  • Masoud Salavati-Niasari
  • Samira Bagheri
Article

Abstract

TiO2@SiO2 core/shell nanoparticles have been synthesized by sol–gel method from tetraethylorthotitanate and tetraethylorthosilicate. The synthesized products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectrum, electron dispersive X-ray spectroscopy and ultraviolet–visible. The results revealed that compared to SiO2 and TiO2, TiO2@SiO2 core/shell nanoparticles display smaller crystal size and greater band gap energy. The photocatalytic activity of the synthesized products has been compared in the photodegradation activity of methylene blue.

Keywords

TiO2 Methyl Blue Photocatalytic Activity Methylene Blue TiO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to University of Kashan for supporting this work by Grant No. (159271/375).

References

  1. 1.
    M. Stylidi, D.I. Kondarides, X.E. Verykios, Appl. Catal. B 40, 271 (2003)CrossRefGoogle Scholar
  2. 2.
    J.B. Zhong, J.Z. Li, F.M. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, J. Mol. Catal. A Chem. 357, 101 (2012)CrossRefGoogle Scholar
  3. 3.
    H.O. Seo, C.W. Sim, K.-D. Kim, Y.D. Kim, D.C. Lim, Chem. Eng. J. 183, 381 (2012)CrossRefGoogle Scholar
  4. 4.
    T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, J. Hazard. Mater. 186, 921 (2011)CrossRefGoogle Scholar
  5. 5.
    D. Zhao, M. Jaroniec, B.S. Hsiao, Editorial for themed issue on advanced materials in water treatments. Mater. Chem. 20, 4476 (2010)Google Scholar
  6. 6.
    H. Ma, C. Burger, B.S. Hsiao, B. Chu, J. Mater. Chem. 21, 7507 (2011)CrossRefGoogle Scholar
  7. 7.
    J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, J. Mater. Chem. 20, 4512 (2010)CrossRefGoogle Scholar
  8. 8.
    N.K. Dey, M.J. Kim, K.D. Kim, H.O. Seo, D. Kim, Y.D. Kim, D.C. Lim, K.H. Lee, J. Mol. Catal. A Chem. 337, 33 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Ding, X.J. Hu, G.Q. Lu, P.L. Yue, P.F. Greenfield, Langmuir 16, 6216 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Dutta, S.A. Parsons, C. Bhattacharjee, P. Jarvis, S. Datta, S. Bandyopadhyay, Chem. Eng. J. 155, 674 (2009)CrossRefGoogle Scholar
  11. 11.
    T. Robinson, B. Chandran, P. Nigam, Environ. Int. 28, 29 (2002)CrossRefGoogle Scholar
  12. 12.
    A. Ozer, G.B. Dursun, J. Hazard. Mater. 146, 262 (2007)CrossRefGoogle Scholar
  13. 13.
    D. Ozer, G.B. Dursun, A. Ozer, J. Hazard. Mater. 144, 171 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)CrossRefGoogle Scholar
  15. 15.
    Z.G. Xiong, J.Z. Ma, W.J. Ng, T.D. Waite, X.S. Zhao, Water Res. 45, 2095 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Yang, T. Fan, H. Zhou, J. Ding, D. Zhang, PLoS ONE 6, e24788 (2011)CrossRefGoogle Scholar
  17. 17.
    T.-X. Fan, S.-K. Chow, D. Zhang, Prog. Mater Sci. 54, 542 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Gardin, R. Signorini, A. Pistore, G.D. Giustina, G. Brusatin, M. Guglielmi, R. Bozio, J. Phys. Chem. C 114, 7646 (2010)CrossRefGoogle Scholar
  19. 19.
    J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Atmos. Environ. 43, 2229 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, Ceram. Interfaces 34, 1067 (2008)CrossRefGoogle Scholar
  21. 21.
    G.D. Sheng, J.X. Li, S.W. Wang, X.K. Wang, Prog. Chem. 21, 2492 (2009)Google Scholar
  22. 22.
    T. Guo, Z. Bai, C. Wu, T. Zhu, Appl. Catal. B 79, 171 (2008)CrossRefGoogle Scholar
  23. 23.
    J.M. Coronado, J. Soria, Catal. Today 123, 37 (2007)CrossRefGoogle Scholar
  24. 24.
    L. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, J. Catal. 196, 253 (2000)CrossRefGoogle Scholar
  25. 25.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  26. 26.
    J.T. Yates Jr, Surf. Sci. 603, 1605 (2009)CrossRefGoogle Scholar
  27. 27.
    C.-S. Kim, J.-W. Shin, S.-H. An, H.-D. Jang, T.-O. Kim, Chem. Eng. J. 204–206, 40 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Cao, K.L. Yeung, J.K.C. Kwan, P.M.T. To, S.C.T. Yu, Appl. Catal. B Environ. 86, 127 (2009)CrossRefGoogle Scholar
  29. 29.
    R.N. Viswanath, S. Ramasamy, Colloids Surf. A 133, 49 (1998)CrossRefGoogle Scholar
  30. 30.
    X. Fu, L.A. Lark, Q. Yang, M.A. Anderson, Environ. Sci. Technol. 30, 647 (1996)CrossRefGoogle Scholar
  31. 31.
    P. Cheng, M. Zheng, Y. Jin, Q. Huang, M. Gu, Mater. Lett. 57, 2989 (2003)CrossRefGoogle Scholar
  32. 32.
    C. Jin, R.Y. Zheng, Y. Guo, J.L. Xie, Y.X. Zhu, Y.C. Xie, J. Mol. Catal. A Chem. 313, 44 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Chen, M. Long, H. Zeng, W. Cai, B. Zhou, J. Zhang, Y. Wu, D. Ding, D. Wu, J. Mol. Catal. A Chem. 314, 35 (2009)CrossRefGoogle Scholar
  34. 34.
    G. Colón, M.C. Hidalgo, J.A. Navío, Catal. Today 76, 91 (2002)CrossRefGoogle Scholar
  35. 35.
    Z. Zang, X. Tang, J. Alloys. Compd. 619, 98 (2015)CrossRefGoogle Scholar
  36. 36.
    L. Hongjun, Z. Zang, X. Tang, Opt. Mater. Express 4, 1762 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Lee, I.-S. Cho, J.H. Lee, D.H. Kim, D.W. Kim, J.Y. Kim, H. Shin, J.-K. Lee, H.S. Jung, N.-G. Park, K. Kim, M.J. Ko, K.S. Hong, Chem. Mater. 22, 1958 (2010)CrossRefGoogle Scholar
  38. 38.
    T. Sugimoto, X. Zhou, A. Muramatsu, J. Colloid Interface Sci. 259, 53 (2003)CrossRefGoogle Scholar
  39. 39.
    M. Gholami, M. Salavati-Niasari, M. Bazarganipour, E. Noori, Superlattices Microstruct. 61, 33 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Noori, M. Bazarganipour, M. Salavati-Niasari, T. Gholami, J. Clust. Sci. 24, 1171 (2013)CrossRefGoogle Scholar
  41. 41.
    Z. Shahri, M. Bazarganipour, M. Salavati-Niasari, Superlattices Microstruct. 63, 258 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Salavati-Niasari, B. Shoshtari-Yeganeh, M. Bazarganipour, Superlattices Microstruct. 58, 20 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Bazarganipour, M. Salavati-Niasari, Micro Nano Lett. 7, 388 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Salavati-Niasari, M. Bazarganipour, J. Clust. Sci. 23, 503 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Goudarzi, M. Bazarganipour, M. Salavati-Niasari, RSC Adv. 4, 46517 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Mandizadeh, M. Bazarganipour, M. Salavati-Niasari, Ceram. Int. 40, 15685 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1089 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Gholamrezaei, M. Salavati-Niasari, M. Bazarganipour, M. Panahi-Kalamuei, S. Bagheri, Adv. Powder Technol. 25, 1585 (2014)CrossRefGoogle Scholar
  49. 49.
    P.D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 125, 14539 (2003)CrossRefGoogle Scholar
  50. 50.
    S. Pradhan, S. Chen, J. Zou, S.M. Kauzlarich, J. Phys. Chem. C 112, 13292 (2008)CrossRefGoogle Scholar
  51. 51.
    G.-L. Tan, M.F. Lemon, R.H. French, J. Am. Ceram. Soc. 86, 1885 (2003)CrossRefGoogle Scholar
  52. 52.
    P. Klankaw, C. Chawengkijwanich, N. Grisdanurak, S. Chiarakorn, Superlattices Microstruct. 51, 343 (2012)CrossRefGoogle Scholar
  53. 53.
    X. Gao, I.E. Wachs, Catal. Today 51, 233 (1999)CrossRefGoogle Scholar
  54. 54.
    R.V. Grieken, J. Aguado, M.J. López-Muñoz, J. Marugán, J. Photochem. Photobiol. A 148, 315 (2002)CrossRefGoogle Scholar
  55. 55.
    Y.H. Hsien, C.F. Chang, Y.H. Chen, S. Cheng, Appl. Catal. B 31, 241 (2001)CrossRefGoogle Scholar
  56. 56.
    J. Tauc, R. Grigorovici, A. Vancu, J. Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar
  57. 57.
    M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A. Al-Hajry, S.H. Kim, S.W. Hwang, J. Phys. D Appl. Phys. 44, 425401 (2011)CrossRefGoogle Scholar
  58. 58.
    M. Abaker, A. Umar, S. Baskoutas, S.H. Kim, S.W. Hwang, J. Phys. D Appl. Phys. 44, 155405 (2011)CrossRefGoogle Scholar
  59. 59.
    A. Umar, M. Abaker, M. Faisal, S.W. Hwang, S. Baskoutas, S.A. Al-Sayari, J. Nanosci. Nanotechnol. 11, 3474 (2011)CrossRefGoogle Scholar
  60. 60.
    S. Hu, F. Li, Z. Fan, Bull. Korean Chem. Soc. 33, 1895 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  3. 3.Centre for Research in Nanotechnology and Catalysis (NANOCAT), 3rd Floor, Block A, Institute of Postgraduate Studies (IPS)University of MalayaKuala LumpurMalaysia

Personalised recommendations