Advertisement

Preparation and photovoltaic properties of silicon quantum dots embedded in a dielectric matrix: a review

  • Xiaobo Chen
  • Peizhi Yang
Article

Abstract

Over the last few years silicon quantum dots (Si QDs) have come under intensive research because of their interesting physical properties and their potential use in future electronic and optoelectronic applications. Focusing on photovoltaic applications, we review recent progress in silicide-embedded Si QDs films with different fabrication techniques and different characteristics. Some avenues for further material improvements are discussed. The performances of several photovoltaic devices reported in the literature are also reviewed and discussed. We assess the state of the art in the area of Si QDs layer deposition, including fabrication technologies and film properties, and highlight the challenges that need to be overcome. Finally, some existing problems and future work are pointed out.

Keywords

Solar Cell Photovoltaic Device Plasma Enhance Chemical Vapour Deposition Dielectric Matrix Crystalline Silicon Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51362031, U1037604), A Project Supported by Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 15ZB0317), and Scholarship Award for Excellent Doctoral Student granted by Yunnan Province.

References

  1. 1.
    M. Naddaf, J. Mater. Sci.: Mater. Electron. 23, 2173 (2012)Google Scholar
  2. 2.
    L. Mangolini, J. Vac. Sci. Technol. B 31, 020801 (2013)Google Scholar
  3. 3.
    Q. Guo, T. Wang, K. Sheng, B. Yu, J. Mater. Sci.: Mater. Electron. 23, 334 (2012)Google Scholar
  4. 4.
    J. Ji, H. Zhang, Y. Qiu, Y. Luo, L. Hu, J. Mater. Sci.: Mater. Electron. 24, 4433 (2013)Google Scholar
  5. 5.
    F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Nat. Nanotechnol. 9, 19 (2014)Google Scholar
  6. 6.
    A.M. Hartel, S. Gutsch, D. Hiller, C. Kübel, N. Zakharov, P. Werner, M. Zacharias, Appl. Phys. Lett. 101, 193103 (2012)Google Scholar
  7. 7.
    R. Karmouch, G. Savard, D. Barba, D. Koshel, F. Martin, G.G. Ross, J. Mater. Sci.: Mater. Electron. 24, 1837 (2013)Google Scholar
  8. 8.
    B.T. Goh, C.K. Wah, Z. Aspanut, S.A. Rahman, J. Mater. Sci.: Mater. Electron. 25, 286 (2014)Google Scholar
  9. 9.
    P. Löper, M. Canino, D. Qazzazie, M. Schnabel, M. Allegrezza, C. Summonte, S.W. Glunz, S. Janz, M. Zacharias, Appl. Phys. Lett. 102, 033507 (2013)Google Scholar
  10. 10.
    X. Chen, P. Yang, J. Mater. Sci.: Mater. Electron. 25, 5410 (2014)Google Scholar
  11. 11.
    A. Kole, P. Chaudhuri, AIP Adv. 4, 107106 (2014)Google Scholar
  12. 12.
    X. Yu, W. Yu, X. Wang, Y. Zheng, J. Zhang, Z. Jiang, G. Fu, Superlattices Microstruct. 78, 88 (2015)Google Scholar
  13. 13.
    S.K. Ray, S. Maikap, W. Banerjee, S. Das, J. Phys. D Appl. Phys. 46, 153001 (2013)Google Scholar
  14. 14.
    M.L. Ciurea, A.M. Lepadatu, Dig. J. Nanomater. Bios. 10, 59 (2015)Google Scholar
  15. 15.
    L.F. Kourkoutis, X. Hao, S. Huang, B. Puthen-Veettil, G. Conibeer, M.A. Green, I. Perez-Wurfl, Nanoscale 5, 7499 (2013)Google Scholar
  16. 16.
    K.Y. Kuo, P.R. Huang, P.T. Lee, Nanotechnology 24, 195701 (2013)Google Scholar
  17. 17.
    A.M. Lepadatu, I. Stavarache, M.L. Ciurea, V. Iancu, J. Appl. Phys. 107, 033721 (2010)Google Scholar
  18. 18.
    D. Di, H. Xu, I. Perez-Wurfl, M.A. Green, G. Conibeer, Prog. Photovolt.: Res. Appl. 21, 569 (2013)Google Scholar
  19. 19.
    G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C.W. Jiang, T. Fangsuwannarak, E. Pink, Y.D. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K.L. Lin, Thin Solid Films 511, 654 (2006)Google Scholar
  20. 20.
    P.J. Wu, Y.C. Wang, I.C. Chen, J. Phys. D Appl. Phys. 46, 125104 (2013)Google Scholar
  21. 21.
    S. Gutsch, A.M. Hartel, D. Hiller, N. Zakharov, P. Werner, M. Zacharias, Appl. Phys. Lett. 100, 233115 (2012)Google Scholar
  22. 22.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt.: Res. Appl. 23, 1 (2015)Google Scholar
  23. 23.
    A. Richter, M. Hermle, S.W. Glunz, IEEE J. Photovolt. 3, 1184 (2013)Google Scholar
  24. 24.
    G. Conibeer, M. Green, E.C. Cho, D. König, Y.H. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Thin Solid Films 516, 6748 (2008)Google Scholar
  25. 25.
    I. Perez-Wurfl, L. Ma, D. Lin, X. Hao, M.A. Green, G. Conibeer, Sol. Energy Mater. Sol. Cells 100, 65 (2012)Google Scholar
  26. 26.
    Y. Cao, P. Lu, X. Zhang, J. Xu, L. Xu, K. Chen, Nanoscale Res. Lett. 9, 1 (2014)Google Scholar
  27. 27.
    T. Saga, NPG Asia Mater. 2, 96 (2010)Google Scholar
  28. 28.
    Z.Y. Wan, S.J. Huang, M.A. Green, G. Conibeer, Phys. Status Solidi C 8, 185 (2011)Google Scholar
  29. 29.
    C.W. Jiang, M.A. Green, J. Appl. Phys. 99, 114902 (2006)Google Scholar
  30. 30.
    Z. Wan, R. Patterson, S. Huang, M. Green, G. Conibeer, EPL-Europhys. Lett. 95, 67006 (2011)Google Scholar
  31. 31.
    S. Janz, P. Löper, M. Schnabel, Mater. Sci. Eng. B 178, 542 (2013)Google Scholar
  32. 32.
    M. Schnabel, C. Weiss, P. Löper, P.R. Wilshaw, S. Janz, Phys. Status Solidi A (2015). doi: 10.1002/pssa.201431764 Google Scholar
  33. 33.
    X.X. Wang, J.G. Zhang, L. Ding, B.W. Cheng, W.K. Ge, J.Z. Yu, Q.M. Wang, Phys. Rev. B 72, 195313 (2005)Google Scholar
  34. 34.
    R. Ha, S. Kim, H.J. Kim, J.C. Lee, J.S. Bae, Y. Kim, J. Nanosci. Nanotechnol. 12, 1448 (2012)Google Scholar
  35. 35.
    M. Künle, T. Kaltenbach, P. Löper, A. Hartel, S. Janz, O. Eibl, K.G. Nickel, Thin Solid Films 519, 151 (2010)Google Scholar
  36. 36.
    J. Huang, Y. Zeng, W. Wang, Y. Yang, J. Huang, R. Tan, S. Dai, N. Dai, W. Song, Phys. Status Solidi A 210, 528 (2013)Google Scholar
  37. 37.
    S. Hernández, J. López-Vidrier, L. López-Conesa, D. Hiller, S. Gutsch, J. Ibáñez, S. Estradé, F. Peiró, M. Zacharias, B. Garrido, J. Appl. Phys. 115, 203504 (2014)Google Scholar
  38. 38.
    F. Iacona, G. Franzò, C. Spinella, J. Appl. Phys. 87, 1295 (2000)Google Scholar
  39. 39.
    D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, H. Hofmeister, J. Appl. Phys. 92, 4678 (2002)Google Scholar
  40. 40.
    M. Molinari, H. Rinnert, M. Vergnat, P. Weisbecker, Mater. Sci. Eng. B 101, 186 (2003)Google Scholar
  41. 41.
    T. Roschuk, I.F. Crowe, A.P. Knights, M.P. Halsall, Prog. Optics 58, 251 (2013)Google Scholar
  42. 42.
    T.V. Torchynska, J. Non-Cryst. Solids 352, 2484 (2006)Google Scholar
  43. 43.
    S. Mirabella, R. Agosta, G. Franzò, I. Crupi, M. Miritello, R.L. Savio, M.A.D. Stefano, S.D. Marco, F. Simone, A. Terrasi, J. Appl. Phys. 106, 103505 (2009)Google Scholar
  44. 44.
    X. Wang, X. Yu, W. Yu, H. Feng, J. Wang, C. Yin, W. Lu, G. Fu, J. Mater. Sci. 9, 1353 (2014)Google Scholar
  45. 45.
    K. Surana, H. Lepage, J.M. Lebrun, B. Doisneau, D. Bellet, L. Vandroux, G.L. Carval, M. Baudrit, P. Thony, P. Mur, Nanotechnology 23, 105401 (2012)Google Scholar
  46. 46.
    N.R. Mavilla, C.S. Solanki, J. Vasi, Phys. E 52, 59 (2013)Google Scholar
  47. 47.
    A.K. Panchal, C.S. Solanki, J. Cryst. Growth 311, 2659 (2009)Google Scholar
  48. 48.
    T.C. Tsai, L.Z. Yu, C.T. Lee, Nanotechnology 18, 275707 (2007)Google Scholar
  49. 49.
    K.M. Lee, T.H. Kim, J.D. Hwang, S. Jang, K. Jeong, M. Han, S. Won, J. Sok, K. Park, W.S. Hong, Scripta Mater. 60, 703 (2009)Google Scholar
  50. 50.
    Z. Wan, S. Huang, M.A. Green, G. Conibeer, Nanoscale Res. Lett. 6, 129 (2011)Google Scholar
  51. 51.
    K. Bi, Y. Liu, K. Liu, J. Jiang, W. Peng, Surf. Coat. Technol. 228, 148 (2013)Google Scholar
  52. 52.
    C. Summonte, M. Allegrezza, M. Bellettato, F. Liscio, M. Canino, A. Desalvo, J. López-Vidrier, S. Hernández, L. López-Conesa, S. Estradé, F. Peiró, B. Garrido, P. Löper, M. Schnabel, S. Janz, R. Guerra, S. Ossicini, Sol. Energy Mater. Sol. Cells 128, 138 (2014)Google Scholar
  53. 53.
    B. Sain, D. Das, Phys. Chem. Chem. Phys. 15, 3881 (2013)Google Scholar
  54. 54.
    G. Faraci, G. Mannino, A.R. Pennisi, R. Ruggeri, P. Sberna, V. Privitera, J. Appl. Phys. 113, 063518 (2013)Google Scholar
  55. 55.
    Y. Li, B. Qian, Z. Sui, C. Jiang, Appl. Phys. Lett. 103, 161908 (2013)Google Scholar
  56. 56.
    E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, App. Phys. Rev. 1, 011302 (2014)Google Scholar
  57. 57.
    A.M. Hartel, D. Hiller, S. Gutsch, P. Löper, S. Estradé, F. Peiró, B. Garrido, M. Zacharias, Thin Solid Films 520, 121 (2011)Google Scholar
  58. 58.
    P.L. Li, C. Gau, C.W. Liu, Thin Solid Films 529, 185 (2013)Google Scholar
  59. 59.
    D. Hiller, S. Gutsch, A.M. Hartel, P. Löper, T. Gebel, M. Zacharias, J. Appl. Phys. 115, 134311 (2014)Google Scholar
  60. 60.
    B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti, G. Bremond, D. Maestre, O. Palais, Appl. Phys. Lett. 96, 183105 (2010)Google Scholar
  61. 61.
    B. Sain, D. Das, RSC Adv. 4, 36929 (2014)Google Scholar
  62. 62.
    J. Ma, J. Ni, J. Zhang, Q. Liu, X. Chen, D. Zhang, X. Zhang, Y. Zhao, Sol. Energy Mater. Sol. Cells 130, 561 (2014)Google Scholar
  63. 63.
    A. Kole, P. Chaudhuri, Thin Solid Films 522, 45 (2012)Google Scholar
  64. 64.
    J. Huang, Y. Zeng, R. Tan, W. Wang, Y. Yang, N. Dai, W. Song, Appl. Surf. Sci. 270, 428 (2013)Google Scholar
  65. 65.
    S. Ilday, G. Nogay, R. Turan, Appl. Surf. Sci. 318, 256 (2014)Google Scholar
  66. 66.
    P.D. Nguyen, D.M. Kepaptsoglou, Q.M. Ramasse, M.F. Sunding, L.O. Vestland, T.G. Finstad, A. Olsen, J. Appl. Phys. 112, 073514 (2012)Google Scholar
  67. 67.
    Y.H. So, S. Huang, G. Conibeer, M.A. Green, Thin Solid Films 519, 5408 (2011)Google Scholar
  68. 68.
    O. Debieu, R.P. Nalini, J. Cardin, X. Portier, J. Perrière, F. Gourbilleau, Nanoscale Res. Lett. 8, 1 (2013)Google Scholar
  69. 69.
    K. Ma, J.Y. Feng, Z.J. Zhang, Nanotechnology 17, 4650 (2006)Google Scholar
  70. 70.
    M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett. 80, 661 (2002)Google Scholar
  71. 71.
    J.M. Terrazas, N. Nedev, E. Manolov, B. Valdez, D. Nesheva, M.A. Curiel, R. Haasch, I. Petrov, J. Mater. Sci.: Mater. Electron. 21, 481 (2010)Google Scholar
  72. 72.
    P.D. Nguyen, D.M. Kepaptsoglou, Q.M. Ramasse, A. Olsen, Phys. Rev. B 85, 085315 (2012)Google Scholar
  73. 73.
    M. Xie, D. Li, L. Chen, F. Wang, X. Zhu, D. Yang, Appl. Phys. Lett. 102, 123108 (2013)Google Scholar
  74. 74.
    Y.-L. Tao, Y.-H. Zuo, J. Zheng, C.-L. Xue, B.-W. Cheng, Q.-M. Wang, J. Xu, Chin. Phys. B 21, 077402 (2012)Google Scholar
  75. 75.
    X. Chen, W. Yang, L. Duan, L. Zhang, P. Yang, J. Inorg. Mater. 29, 1270 (2014)Google Scholar
  76. 76.
    A.R. Wilkinson, R.G. Elliman, J. Appl. Phys. 96, 4018 (2004)Google Scholar
  77. 77.
    V. Mulloni, P. Bellutti, L. Vanzetti, Surf. Sci. 585, 137 (2005)Google Scholar
  78. 78.
    M. Bolduc, G. Genard, M. Yedji, D. Barbe, F. Martin, G. Terwagne, G.G. Ross, J. Appl. Phys. 105, 013108 (2009)Google Scholar
  79. 79.
    R.P.S. Thakur, R. Singh, Appl. Phys. Lett. 64, 327 (1994)Google Scholar
  80. 80.
    D. Hiller, S. Goetze, M. Zacharias, J. Appl. Phys. 109, 054308 (2011)Google Scholar
  81. 81.
    D.E. Ylmaz, C. Bulutay, T. Çağın, Appl. Phys. Lett. 94, 191914 (2009)Google Scholar
  82. 82.
    J. Barbé, K. Makasheva, S. Perraud, M. Carrada, B. Despax, J. Phys. D Appl. Phys. 47, 255302 (2014)Google Scholar
  83. 83.
    A. Zelenina, A. Sarikov, D.M. Zhigunov, C. Weiss, N. Zakharov, P. Werner, L. López-Conesa, S. Estradé, F. Peiró, S.A. Dyakov, M. Zacharias, J. Appl. Phys. 115, 244304 (2014)Google Scholar
  84. 84.
    D. Hiller, A. Zelenina, S. Gutsch, S.A. Dyakov, L. López-Conesa, J. López-Vidrier, S. Estradé, F. Peiró, B. Garrido, J. Valenta, M. Kořínek, F. Trojánek, P. Malý, M. Schnabel, C. Weiss, S. Janz, M. Zacharias, J. Appl. Phys. 115, 204301 (2014)Google Scholar
  85. 85.
    G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, J. Cryst. Growth 310, 3680 (2008)Google Scholar
  86. 86.
    M. Künle, S. Janz, K.G. Nickel, A. Heidt, M. Luysberg, O. Eibl, Sol. Energy Mater. Sol. Cells 115, 11 (2013)Google Scholar
  87. 87.
    J. Ma, J. Ni, J. Zhang, Q. Liu, G. Hou, X. Chen, X. Zhang, Y. Zhao, Sol. Energy Mater. Sol. Cells 123, 228 (2014)Google Scholar
  88. 88.
    G. Wen, X. Zeng, W. Liao, C. Cao, Thin Solid Films 552, 18 (2014)Google Scholar
  89. 89.
    A.M. Hartel, M. Künle, P. Löper, S. Janz, A.W. Bett, Sol. Energy Mater. Sol. Cells 94, 1942 (2010)Google Scholar
  90. 90.
    X.J. Hao, A.P. Podhorodecki, Y.S. Shen, G. Zatryb, J. Misiewicz, M.A. Green, Nanotechnology 20, 485703 (2009)Google Scholar
  91. 91.
    D. Di, H. Xu, I. Perez-Wurfl, M.A. Green, G. Conibeer, Nanoscale Res. Lett. 6, 1 (2011)Google Scholar
  92. 92.
    J. Moon, S.J. Baik, O. Byungsung, J.C. Lee, Nanoscale Res. Lett. 7, 1 (2012)Google Scholar
  93. 93.
    D. Song, E.C. Cho, G. Conibeer, Y. Huang, C. Flynn, M.A. Green, J. Appl. Phys. 103, 083544 (2008)Google Scholar
  94. 94.
    A.G. Imer, I. Yildiz, R. Turan, Phys. E 42, 2358 (2010)Google Scholar
  95. 95.
    Y. Zeng, N. Dai, Q. Cheng, J. Huang, X. Liang, W. Song, Mater. Sci. Semicond. Process. 16, 598 (2013)Google Scholar
  96. 96.
    A.E. Naciri, P. Miska, A.S. Keita, Y. Battie, H. Rinnert, M. Vergnat, J. Nanopart. Res. 15, 1 (2013)Google Scholar
  97. 97.
    D.C. Wang, J.R. Chen, J. Zhu, C.T. Lu, M. Lu, J. Nanopart. Res. 15, 1 (2013)Google Scholar
  98. 98.
    J. Gan, Q. Li, Z. Hu, W. Yu, K. Gao, J. Sun, N. Xu, J. Wu, Appl. Surf. Sci. 257, 6145 (2011)Google Scholar
  99. 99.
    I.V. Mirgorodskiy, L.A. Golovan, V.Y. Timoshenko, A.V. Semenov, V.M. Puzikov, Semiconductors 48, 711 (2014)Google Scholar
  100. 100.
    J.W. Luo, P. Stradins, A. Zunger, Energy Environ. Sci. 4, 2546 (2011)Google Scholar
  101. 101.
    S. Hernández, A. Martínez, P. Pellegrino, Y. Lebour, B. Garrido, E. Jordana, J.M. Fedeli, J. Appl. Phys. 104, 044304 (2008)Google Scholar
  102. 102.
    A. Coyopol, T. Díaz-Becerril, G. García-Salgado, H. Juárez-Santisteban, R. López, E. Rosendo-Andrés, J. Lumin. 145, 88 (2014)Google Scholar
  103. 103.
    U. Kahler, H. Hofmeister, Opt. Mater. 17, 83 (2001)Google Scholar
  104. 104.
    T. Zheng, Z. Li, Superlattices Microstruct. 37, 227 (2005)Google Scholar
  105. 105.
    G.F. Grom, D.J. Lockwood, J.P. McCaffrey, H.J. Labbe, P.M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, L. Tsybeskov, Nature 407, 358 (2000)Google Scholar
  106. 106.
    E.C. Cho, M.A. Green, G. Conibeer, D.Y. Song, Y.H. Cho, G. Scardera, S.J. Huang, S. Park, X.J. Hao, Y.D. Huang, L.V. Dao, Adv. Opt. Electron. 2007, 69578 (2007)Google Scholar
  107. 107.
    S. Park, E. Cho, D. Song, G. Conibeer, M.A. Green, Sol. Energy Mater. Sol. Cells 93, 684 (2009)Google Scholar
  108. 108.
    D. Di, I. Perez-Wurfl, A. Gentle, D.H. Kim, X. Hao, L. Shi, G. Conibeer, M.A. Green, Nanoscale Res. Lett. 5, 1762 (2010)Google Scholar
  109. 109.
    G. Zatryb, A. Podhorodecki, X.J. Hao, J. Misiewicz, Y.S. Shen, M.A. Green, Nanotechnology 22, 335703 (2011)Google Scholar
  110. 110.
    D. Li, Y.B. Chen, M. Lu, Mater. Lett. 89, 9 (2012)Google Scholar
  111. 111.
    D. Li, Y.B. Chen, Y. Ren, J. Zhu, Y.Y. Zhao, M. Lu, Nanoscale Res. Lett. 7, 1 (2012)Google Scholar
  112. 112.
    A.K. Panchal, D.K. Rai, M. Mathew, C.S. Solanki, J. Nanopart. Res. 13, 2469 (2011)Google Scholar
  113. 113.
    J. López-Vidrier, S. Hernández, J. Samà, M. Canino, M. Allegrezza, M. Bellettato, R. Shukla, M. Schnabel, P. Löper, L. López-Conesa, S. Estradé, F. Peiró, S. Janz, B. Garrido, Mater. Sci. Eng. B 178, 639 (2013)Google Scholar
  114. 114.
    Y. Rui, S. Li, Y. Cao, J. Xu, W. Li, K. Chen, Appl. Surf. Sci. 269, 37 (2013)Google Scholar
  115. 115.
    D. Di, I. Perez-Wurfl, G. Conibeer, M.A. Green, Sol. Energy Mater. Sol. Cells 94, 2238 (2010)Google Scholar
  116. 116.
    K. Ding, U. Aeberhard, O. Astakhov, U. Breuer, M. Beigmohamadi, S. Suckow, B. Berghoff, W. Beyer, F. Finger, R. Carius, U. Rau, J. Non-Cryst. Solids 358, 2145 (2012)Google Scholar
  117. 117.
    X.J. Hao, E.C. Cho, C. Flynn, Y.S. Shen, S.C. Park, G. Conibeer, M.A. Green, Sol. Energy Mater. Sol. Cells 93, 273 (2009)Google Scholar
  118. 118.
    C. Summonte, M. Canino, M. Allegrezza, M. Bellettato, A. Desalvo, R. Shukla, I.P. Jain, I. Crupi, S. Milita, L. Ortolani, L. López-Conesa, S. Estradé, F. Peiró, B. Garrido, Mater. Sci. Eng. B 178, 551 (2013)Google Scholar
  119. 119.
    D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, Nano. Lett. 1, 3 (2000)Google Scholar
  120. 120.
    S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436, 91 (2005)Google Scholar
  121. 121.
    G.M. Dalpian, J.R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006)Google Scholar
  122. 122.
    S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, D. Ninno, IEEE J. Sel. Top. Quant. 12, 1585 (2006)Google Scholar
  123. 123.
    G. Cantele, E. Degoli, E. Luppi, R. Magri, D. Ninno, G. Iadonisi, S. Ossicini, Phys. Rev. B 72, 113303 (2005)Google Scholar
  124. 124.
    S.H. Hong, Y.S. Kim, W. Lee, Y.H. Kim, J.Y. Song, J.S. Jang, J.H. Park, S.-H. Choi, K.J. Kim, Nanotechnology 22, 425203 (2011)Google Scholar
  125. 125.
    P.-J. Wu, Y.-C. Wang, I.-C. Chen, Nanoscale Res. Lett. 8, 457 (2013)Google Scholar
  126. 126.
    S. Huang, Y.H. So, G. Conibeer, M. Green, Jpn. J. Appl. Phys. 51, 10NE10 (2012)Google Scholar
  127. 127.
    J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng, Y. Zhao, Sol. Energy Mater. Sol. Cells 114, 9 (2013)Google Scholar
  128. 128.
    Y.H. So, S. Huang, G. Conibeer, M.A. Green, EPL-Europhys. Lett. 96, 17011 (2011)Google Scholar
  129. 129.
    T. Nakamura, S. Adachi, M. Fujii, K. Miura, S. Yamamoto, Phys. Rev. B 85, 045441 (2012)Google Scholar
  130. 130.
    X.J. Hao, E.C. Cho, G. Scardera, Y.S. Shen, E. Bellet-Amalric, D. Bellet, G. Conibeer, M.A. Green, Sol. Energy Mater. Sol. Cells 93, 1524 (2009)Google Scholar
  131. 131.
    P.J. Smith, Materials and Chemical Analysis of Electronic Devices, in Microelectronics Manufacturing Diagnostics Handbook, ed. by A.H. Landzberg (Springer, NewYork, 1993), pp. 396–424Google Scholar
  132. 132.
    E.C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.C. Park, M.A. Green, Nanotechnology 19, 245201 (2008)Google Scholar
  133. 133.
    G. Conibeer, M.A. Green, D. König, I. Perez-Wurfl, S. Huang, X. Hao, D. Di, L. Shi, S. Shrestha, B. Puthen-Veetil, Y. So, B. Zhang, Z. Wan, Prog. Photovolt.: Res. Appl. 19, 813 (2011)Google Scholar
  134. 134.
    J. Zhong, H. Zhang, X. Sun, S.T. Lee, Adv. Mater. 26, 7786 (2014)Google Scholar
  135. 135.
    X.J. Hao, E.C. Cho, C. Flynn, Y.S. Shen, G. Conibeer, M.A. Green, Nanotechnology 19, 424019 (2008)Google Scholar
  136. 136.
    X.J. Hao, E.C. Cho, G. Scardera, E. Bellet-Amalric, D. Bellet, Y.S. Shen, S. Huang, Y.D. Huang, G. Conibeer, M.A. Green, Thin Solid Films 517, 5646 (2009)Google Scholar
  137. 137.
    J.H. Yoon, Mater. Lett. 136, 237 (2014)Google Scholar
  138. 138.
    V.V. Voitovych, R.M. Rudenko, A.G. Kolosiuk, M.M. Krasko, V.O. Juhimchuk, M.V. Voitovych, S.S. Ponomarov, A.M. Kraitchinskii, V.Y. Povarchuk, V.A. Makara, Semiconductors 48, 73 (2014)Google Scholar
  139. 139.
    H. Miyashita, Y. Watabe, J. Appl. Phys. 70, 2452 (1991)Google Scholar
  140. 140.
    C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 48, 11024 (1993)Google Scholar
  141. 141.
    M. Jivanescu, D. Hiller, M. Zacharias, A. Stesmans, Europhys. Lett. 96, 27003 (2011)Google Scholar
  142. 142.
    S. Gutsch, J. Laube, A.M. Hartel, D. Hiller, N. Zakharov, P. Werner, M. Zacharias, J. Appl. Phys. 113, 133703 (2013)Google Scholar
  143. 143.
    M. Zacharias, D. Hiller, A. Hartel, S. Gutsch, Phys. Status Solidi A 209, 2449 (2012)Google Scholar
  144. 144.
    J. Xu, W. Mu, Z. Xia, H. Sun, D. Wei, W. Li, Z. Ma, K. Chen, J. Non-Cryst. Solids 358, 2141 (2012)Google Scholar
  145. 145.
    S. Cheylan, R.G. Elliman, Appl. Phys. Lett. 78, 1225 (2001)Google Scholar
  146. 146.
    M. Lopez, B. Garrido, C. Garcıa, P. Pellegrino, A. Perez-Rodriguez, J.R. Morante, C. Bonafos, M. Carrada, A. Claverie, Appl. Phys. Lett. 80, 1637 (2002)Google Scholar
  147. 147.
    S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. van Tendeloo, V.V. Moshchalkov, Nat. Nanotechnol. 3, 174 (2008)Google Scholar
  148. 148.
    D. Comedi, O.H.Y. Zalloum, P. Mascher, Appl. Phys. Lett. 87, 213110 (2005)Google Scholar
  149. 149.
    Y.J. Jung, J.H. Yoon, R.G. Elliman, A.R. Wilkinson, J. Appl. Phys. 104, 083518 (2008)Google Scholar
  150. 150.
    M. Kořínek, M. Schnabel, M. Canino, M. Kozák, F. Trojánek, J. Salava, P. Löper, S. Janz, C. Summonte, P. Malý, J. Appl. Phys. 114, 073101 (2013)Google Scholar
  151. 151.
    S. Yamada, Y. Kurokawa, S. Miyajima, M. Konagai, Nanoscale Res. Lett. 9, 1 (2014)Google Scholar
  152. 152.
    M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Appl. Phys. Lett. 72, 2577 (1998)Google Scholar
  153. 153.
    J.H. Yoon, Curr. Appl. Phys. 11, 827 (2011)Google Scholar
  154. 154.
    Y. Kurokawa, S. Tomita, S. Miyajima, A. Yamada, M. Konagai, in Proceedings of the 22nd EU PVSEC, Milan, 233 (2007)Google Scholar
  155. 155.
    K. Ding, U. Aeberhard, O. Astakhov, F. Köhler, W. Beyer, F. Finger, R. Carius, U. Rau, Energ. Procedia 10, 249 (2011)Google Scholar
  156. 156.
    S. Janz, M. Schnabel, P. Löper, C. Summonte, M. Canino, J. López-Vidrier, S. Hernández, B. Garrido, S. W. Glunz, in Proceedings of the 28th EU PVSEC, Paris, 142 (2013)Google Scholar
  157. 157.
    D. Song, E.C. Cho, G. Conibeer, C. Flynn, Y. Huang, M.A. Green, Sol. Energy Mater. Sol. Cells 92, 474 (2008)Google Scholar
  158. 158.
    I. Perez-Wurfl, X. Hao, A. Gentle, D.H. Kim, G. Conibeer, M.A. Green, Appl. Phys. Lett. 95, 153506 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Education Ministry for Advance Technique and Preparation of Renewable Energy MaterialsYunnan Normal UniversityKunmingChina
  2. 2.School of Physics and Mech-tronic EngineeringSichuan University of Arts and ScienceDazhouChina

Personalised recommendations