Structural, spectral and electrical properties of green synthesized ZnS nanoparticles using Elaeocarpus floribundus leaf extract

  • U. S. Senapati
  • D. Sarkar


The present study reports an environment friendly method for the synthesis of zinc sulphide (ZnS) nanoparticles using an aqueous extract of Elaeocarpus floribundus (Indian olive) leaf that acts as a capping as well as a stabilizing agent. X-ray diffraction and selected area electron diffraction studies confirm cubic structure of the nanoparticles. Transmission electron microscopy shows spherical in shape of the particles with diameter ranging from 8 to 3 nm. Static and high frequency optical dielectric constants are determined for all the samples. The optical band gap calculated from Tauc’s plot is found to increase from 3.8 to 4.1 eV. The refractive index of the samples is calculated using Moss and Herve–Vandamme models. The room temperature photoluminescence spectra of the samples show a broad peak centred at 440 nm. The biomolecules involve in the formation of ZnS nanoparticles are studied by Fourier transform infrared spectroscopy analysis. The possible growth mechanism of the synthesized ZnS nanoparticles is also discussed. Current–voltage characteristics under illumination exhibit anomalous behaviour, it shows peak through sudden rise and fall of current with increase of voltage.


Leaf Extract Zinc Sulphide Applied Bias Voltage Sulfur Vacancy Environment Friendly Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A. Mahdi, J.J. Hassan, N.M. Ahmed, S.S. Ng, Z. Hassan, Superlattices Microstruct. 54, 137 (2013)CrossRefGoogle Scholar
  2. 2.
    B. Vaidhyanathan, M. Ganguli, K.J. Rao, Mater. Res. Bull. 30, 1173 (1995)CrossRefGoogle Scholar
  3. 3.
    L.M. Qi, J.M. Ma, H.M. Cheng, Z.G. Zhao, J. Colloids Surf. A 111, 195 (1996)CrossRefGoogle Scholar
  4. 4.
    V. Bessergenev, E.N. Ivanova, Yu.A. Kovalevskaya, S.A. Gromilov, V.N. Kirichenko, S.M. Zemskova, I.G. Vasilieva, B.M. Ayupov, N.L. Shwarz, Mater. Res. Bull. 30, 1393 (1995)CrossRefGoogle Scholar
  5. 5.
    J. Liu, J. Ma, Z.Y. Liu, Y. Song, J. Sun, Z.L. Fang, J. Alloys Comp. 486, 40 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.Y. She, J. Yang, K.Q. Qiu, Trans. Nanferrous Met. Soc. 20, 211 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Krolikowska, A. Kudelski, A. Michota, J. Bukowska, Surf. Sci. 532, 227 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Kumar, S. Mandal, P.R. Selvakannan, R. Parischa, A.B. Mandale, M. Sastry, Langmuir 19, 6277 (2003)CrossRefGoogle Scholar
  9. 9.
    N. Chandrasekharan, P.V. Kamat, J. Phys. Chem. B 104, 10851 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Peto, G.L. Molnar, Z. Paszti, O. Geszti, A. Beck, L. Guczi, Mater. Sci. Eng. C 19, 95 (2002)CrossRefGoogle Scholar
  11. 11.
    M. Forough, K. Farhadi, Turk. J. Eng. Environ. Sci. 34, 281 (2010)Google Scholar
  12. 12.
    N. Ahmad, S. Sharma, Green Sustain. Chem. 2, 141 (2012)CrossRefGoogle Scholar
  13. 13.
    V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Elia, R. Zach, S. Hazan, S. Kolusheva, Z. Porat, Y. Zeiri, Int. J. Nanomed. 9, 4007 (2014)Google Scholar
  15. 15.
    N. Singh, S. Nara, Int. J. Food Sci. Technol. 4, 16 (2013)Google Scholar
  16. 16.
    P. Bansal, N. Jaggi, S.K. Rohilla, Res. J. Chem. Sci. 2(8), 69 (2012)Google Scholar
  17. 17.
    H. Bai, Z. Zhang, Yu. Guo, W. Jia, Nanoscale Res. Lett. 4(7), 717 (2009)CrossRefGoogle Scholar
  18. 18.
    H.-J. Bai, Z.-M. Zhang, J. Gong, Biotechnol. Lett. 28, 1135 (2006)CrossRefGoogle Scholar
  19. 19.
    U.S. Senapati, D. Sarkar, Indian J. Phys. 88, 557 (2014)CrossRefGoogle Scholar
  20. 20.
    U.S. Senapati, D.K. Jha, D. Sarkar, Res. J. Chem. Sci. 5(1), 33 (2015)Google Scholar
  21. 21.
    R. Utami, N. Khalid, M.A. Sukari, M. Rahmani, A.B. Abdul, Dachriyanus, Pak. J. Pharm. Sci. 26(2), 245–264 (2013)Google Scholar
  22. 22.
    M.M.H. Farooqi, R.K. Srivastava, Mater. Sci. Semicond. Process. 20, 61 (2014)CrossRefGoogle Scholar
  23. 23.
    S.O. Pillai, Solid State Physics, 6th edn. (New Age International (P) Ltd., India, 2005)Google Scholar
  24. 24.
    R. Kripal, A.G. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A 76, 523 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Das, A. Dutta, B. Ghosh, S. Banerjee, T.P. Sinha, J. Phys. Chem. Solids 75, 1245 (2014)CrossRefGoogle Scholar
  26. 26.
    T.M. Williams, D. Hunter, A.K. Pradhan, I.V. Kityk, Appl. Phys. Lett. 89, 043116 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Tkaczyk, M. Galceran, S. Kret, M.C. Pujol, M. Aguilo, F. Diaz, A.H. Reshak, I.V. Kityk, Acta Mater. 56, 5677 (2008)CrossRefGoogle Scholar
  28. 28.
    C.S. Pathak, M.K. Mandal, V. Agarwala, Superlattice Microstruct. 58, 135 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Rosetti, R. Hull, J.M. Gibson, L.E. Brus, J. Chem. Phys. 82, 552 (1985)CrossRefGoogle Scholar
  30. 30.
    I.V. Kityk, J. Non-Cryst. Sol. 292, 184 (2001)CrossRefGoogle Scholar
  31. 31.
    I.V. Kityk, A. Kassiba, S. Benet, J. Cluster Sci. 12, 399 (2001)CrossRefGoogle Scholar
  32. 32.
    N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21 (2007)CrossRefGoogle Scholar
  33. 33.
    P. Herve, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)CrossRefGoogle Scholar
  34. 34.
    L. Hannachi, N. Bouarissa, Phys. B 404, 3650 (2009)CrossRefGoogle Scholar
  35. 35.
    F. Mezrag, W.K. Mohamed, N. Bouarissa, Phys. B 405, 2272 (2010)CrossRefGoogle Scholar
  36. 36.
    S.S. Kumar, M.A. Khadar, S.K. Dhara, T.R. Ravindran, K.G.M. Nair, Nucl. Instrum. Methods Phys. Res. B 251, 435 (2006)CrossRefGoogle Scholar
  37. 37.
    P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087 (1999)CrossRefGoogle Scholar
  38. 38.
    H.Y. Lu, S.Y. Chu, S.S. Tan, J. Cryst. Growth 269, 385 (2004)CrossRefGoogle Scholar
  39. 39.
    R. John, S.S. Florence, Chalcogenide Lett. 6, 535 (2009)Google Scholar
  40. 40.
    Y.Y. Loo, B.W. Chieng, M. Nishibuchi, S. Radu, Int. J. Nanomed. 7, 4263 (2012)Google Scholar
  41. 41.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Nanotechnology 18(10), 105104 (2007)CrossRefGoogle Scholar
  42. 42.
    K.S. Venkatesh, S.R. Krishnamoorthi, N.S. Palani, V. Thirumal, S.P. Jose, F.-M. Wang, R. IIangovan, Indian J. Phys. 89(5), 445 (2015)CrossRefGoogle Scholar
  43. 43.
    X.J. Zheng, Y.Q. Chen, T. Zhang, C.B. Jiang, B. Yang, B. Yuan, S.X. Mao, M. Li, Scr. Mater. 62, 520 (2010)CrossRefGoogle Scholar
  44. 44.
    J.H. He, Y.H. Lin, M.E. McConney, V.V. Tsukruk, Z.L. Wang, J. Appl. Phys. 102, 084303 (2007)CrossRefGoogle Scholar
  45. 45.
    Y.G. Liu, P. Feng, X.Y. Xue, S.L. Shi, X.Q. Fu, C. Wang, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 90, 042109 (2007)CrossRefGoogle Scholar
  46. 46.
    S. Srivastava, S.K. Mishra, R.S. Yadav, R.K. Srivastava, A.C. Panday, S.G. Prakash, Dig. J. Nanomater. Biostruct. 5(1), 161 (2010)Google Scholar
  47. 47.
    H.S. Al-Salman, M.J. Abdullah, J. Mater. Sci. Technol. 29(12), 1139 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsHandique Girls’ CollegeGuwahatiIndia
  2. 2.Department of PhysicsGauhati UniversityGuwahatiIndia

Personalised recommendations