Synthesis, characterization and dielectric properties of Ba1−x La x Ti1−x/4O3 powders and ceramics synthesized by sol–gel method

  • Asad Mahmood
  • Abdul Naeem
  • Yaseen Iqbal
  • Tahira Mahmood
  • Asad Ullah


In the present study polycrystalline Ba1−x La x Ti1−x/4O3 (x = 0.00, 0.015, 0.025, 0.035, 0.045 and 0.055) powders were synthesized using sol–gel route at 850 °C for 4 h. Calcined powders were sintered in air at 1300 °C for 6 h to make dense ceramics. XRD studies confirmed the tetragonal crystal structure of the x = 0.00–0.035 compositions at room temperature of the Ba1−x La x Ti1−x/4O3 ceramic samples. A cubic symmetry (Pm3m) was observed for the x > 0.035 compositions around room temperature. SEM studies showed that the average grain size was decreased with an increase in La content. The dielectric constant (ɛr) and dielectric loss (tan δ) of the Ba1−x La x Ti1−x/4O3 ceramics were investigated in the frequency regime (10 kHz–1 MHz). The highest magnitude of ɛr and tan δ around room temperature at 10 kHz was recorded for the x = 0.025 composition as 14,468 and 0.07, respectively. The Curie temperature (Tc) was shifted to low temperatures with an increase in La content. Complex impedance analysis confirmed the grain boundary and bulk contribution in the conduction mechanism for the x = 0.00 composition. The ≥ 0.015 compositions showed only grain boundary contributions. The total resistance of sintered samples was decreased with an increase in temperature for the Ba1−x La x Ti1−x/4O3 ceramics, showing a typical ceramic behavior.


BaTiO3 Barium Titanate Boundary Contribution BaTiO3 Ceramic Bulk Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of Higher Education Commission of Pakistan under the 5000 Indigenous PhD Fellowship Program and International Research Support Initiative Program (IRSIP). The authors acknowledge the laboratory support extended by Prof. I. M. Reaney and his group, Electroceramic Laboratory, Department of Material Science and Engineering, University of Sheffield (UK).


  1. 1.
    L. Chen, H. Wang, X. Xiong, H. Meng, J. Zhang, Ceram. Int. 40, 6241 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Ren, S.P. Kotha, Mater. Lett. 117, 153 (2014)CrossRefGoogle Scholar
  3. 3.
    E. FarrokhTakin, G. Ciofani, M. Gemmi, V. Piazza, B. Mazzolai, V. Mattoli, Colloids Surf. A 415, 247 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, L. Wang, D. Xue, Powder Technol. 217, 629 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Nunes-Pereira, C.M. Costa, R.E. Sousa, A.V. Machado, M.M. Silva, S. Lanceros-Méndez, Electrochim. Acta 117, 276 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Kilic, E. Shim, B.Y. Yeom, B. Pourdeyhimi, J. Electrostat. 71, 41 (2013)CrossRefGoogle Scholar
  7. 7.
    E.A. Ferreira, F.C. Cassanjes, G. Poirier, Opt. Mater. 35, 1141 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Padalia, G. Bisht, U.C. Johri, K. Asokan, Solid State Sci. 19, 122 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Sagar, R.L. Raibagkar, J. Alloys. Compd. 549, 206 (2013)CrossRefGoogle Scholar
  10. 10.
    M.K. Mahata, K. Kumar, V.K. Rai, Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 285 (2014)CrossRefGoogle Scholar
  11. 11.
    M.M. Vijatović Petrović, J.D. Bobić, J. Banys, B.D. Stojanović, Mater. Res. Bull. 48, 3766 (2013)CrossRefGoogle Scholar
  12. 12.
    J.A. Dawson, C.L. Freeman, J.H. Harding, D.C. Sinclair, J. Solid State Chem. 200, 310 (2013)CrossRefGoogle Scholar
  13. 13.
    A.K. Nath, N. Medhi, Radiat. Phys. Chem. 91, 44 (2013)CrossRefGoogle Scholar
  14. 14.
    I. Zajc, M. Drofenik, Ceram. Int. 40, 8033 (2014)CrossRefGoogle Scholar
  15. 15.
    M.M.V. Petrović, J.D. Bobić, T. Ramoška, J. Banys, B.D. Stojanović, Mater. Charact. 62, 1000 (2011)CrossRefGoogle Scholar
  16. 16.
    S.B. Narang, D. Kaur, S. Bahel, Mater. Lett. 60, 3182 (2006)CrossRefGoogle Scholar
  17. 17.
    J.M.F. Ferreira, S.M. Olhero, A. Kaushal, J. Eur. Ceram. Soc. 33, 2509 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Özen, M. Mertens, J. Luyten, F. Snijkers, H. D’Hondt, P. Cool, Ceram. Int. 38, 619 (2012)CrossRefGoogle Scholar
  19. 19.
    V. Vinothini, P. Singh, M. Balasubramanian, Ceram. Int. 32, 99 (2006)CrossRefGoogle Scholar
  20. 20.
    J.Q. Qi, X.H. Wang, H. Zhang, H. Zou, Z.B. Wang, X.W. Qi, Y. Wang, L.T. Li, H.L.W. Chan, Ceram. Int. 40, 2747 (2014)CrossRefGoogle Scholar
  21. 21.
    W.W. Lee, W.-H. Chung, W.-S. Huang, W.-C. Lin, W.-Y. Lin, Y.-R. Jiang, C.-C. Chen, J. Taiwan Inst. Chem. Eng. 44, 660 (2013)CrossRefGoogle Scholar
  22. 22.
    T.M. Stawski, W.J.C. Vijselaar, O.F. Göbel, S.A. Veldhuis, B.F. Smith, D.H.A. Blank, J.E. ten Elshof, Thin Solid Films 520, 4394 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Zhang, F. Jiang, G. Qu, C. Lin, Mater. Lett. 62, 2225 (2008)CrossRefGoogle Scholar
  24. 24.
    W. Jiang, W. Cai, Z. Lin, C. Fu, Mater. Res. Bull. 48, 3092 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Ashiri, Vib. Spectrosc. 66, 24 (2013)CrossRefGoogle Scholar
  26. 26.
    M.R. Mohammadi, D.J. Fray, Particuology 9, 235 (2011)CrossRefGoogle Scholar
  27. 27.
    C.-R. Xin, J. Zhang, Y. Liu, Q.-L. Zhang, H. Yang, D. Cheng, Mater. Res. Bull. 48, 2220 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Kumar Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, J. Phys. Chem. Solids 74, 545 (2013)CrossRefGoogle Scholar
  29. 29.
    J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović, Ceram. Int. 39, 8049 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Hongxia, L. Qiaoling, Y. Yun, G. Zhiwu, Y. Xiaofeng, J. Magn. Magn. Mater. 332, 10 (2013)CrossRefGoogle Scholar
  31. 31.
    K. Venkata Saravanan, K.C. James Raju, J. Alloys. Compd. 571, 43 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Ganguly, S.K. Rout, C.W. Ahn, I.W. Kim, M. Kar, Ceram. Int. 39, 9511 (2013)CrossRefGoogle Scholar
  33. 33.
    W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, Ceram. Int. 39, 7127 (2013)CrossRefGoogle Scholar
  34. 34.
    T.K. Roy, A. Ghosh, Ceram. Int. 40, 10755 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Borodianska, D. Demirskyi, Y. Sakka, P. Badica, O. Vasylkiv, Ceram. Int. 38, 4385 (2012)CrossRefGoogle Scholar
  36. 36.
    D.W. Ni, C.G. Schmidt, F. Teocoli, A. Kaiser, K.B. Andersen, S. Ramousse, V. Esposito, J. Eur. Ceram. Soc. 33, 2529 (2013)CrossRefGoogle Scholar
  37. 37.
    D. Gulwade, P. Gopalan, Solid State Commun. 146, 340 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Adamczyk, Ceram. Int. 32, 923 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Abdelmoula, H. Chaabane, H. Khemakhem, R. Von der Mühll, A. Simon, Solid State Sci. 8, 880 (2006)CrossRefGoogle Scholar
  40. 40.
    J.K. Juneja, P. Kumar, S. Singh, C. Prakash, K.K. Raina, Ceram. Int. 36, 1277 (2010)CrossRefGoogle Scholar
  41. 41.
    X. Chou, J. Zhai, X. Yao, Mater. Chem. Phys. 109, 125 (2008)CrossRefGoogle Scholar
  42. 42.
    D. Czekaj, A. Lisińska-Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, J. Eur. Ceram. Soc. 30, 465 (2010)CrossRefGoogle Scholar
  43. 43.
    S. Sreekantan, A.F.M. Noor, Z.A. Ahmad, R. Othman, A. West, J. Mater. Process. Technol. 195, 171 (2008)CrossRefGoogle Scholar
  44. 44.
    A. Rouahi, A. Kahouli, A. Sylvestre, E. Defaÿ, B. Yangui, J. Alloys. Compd. 529, 84 (2012)CrossRefGoogle Scholar
  45. 45.
    B.C. Sutar, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 7791 (2014)CrossRefGoogle Scholar
  46. 46.
    B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Zhang, A. Chang, F. Guan, L. Zhao, Q. Zhao, J. Yao, X. Huang, Ceram. Int. 40, 7865 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Asad Mahmood
    • 1
    • 2
    • 3
  • Abdul Naeem
    • 1
  • Yaseen Iqbal
    • 2
  • Tahira Mahmood
    • 1
  • Asad Ullah
    • 1
  1. 1.National Centre of Excellence in Physical ChemistryUniversity of PeshawarPeshawarPakistan
  2. 2.Materials Research Laboratory, Institute of Physics and ElectronicsUniversity of PeshawarPeshawarPakistan
  3. 3.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations