Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias



We have prepared poly vinyl chloride (PVC)/poly-methyl methacrylate (PMMA) blend with loading of Nickel oxide (NiO) by solution cast technique. X-ray diffraction reveals the interaction between NiO, PVC and PMMA in the blend form. The weak interaction between PVC, PMMA and NiO was confirmed by Fourier transform infrared spectroscopy. The miscibility of PVC and PMMA has been confirmed by differential scanning calorimetry. The results demonstrate that the 2 wt% NiO loaded PVC/PMMA blend exhibits lowest crystallinity which leads to better NiO dispersion, also observed by atomic force microscopy and scanning electron microscopy. The performance of electrical properties were evaluated under wide band of frequency (10–107 Hz) as a function of DC bias voltage (0–25 V). The dielectric property was characterized via electrical modulus formalism. The present blend systems show good dielectric property as well as considerable conductivity which differs by frequency and DC bias. The variation of AC conductivity as a function of frequency and DC bias shows plateau shape at higher frequency which obeys Jonscher’s power law. It demonstrates that the AC electrical conductivity is directly proportional to the applied DC bias potential. It may be developed for electrolyte application.


Atomic Force Microscopy PMMA Poly Vinyl Chloride Dielectric Relaxation Polymer Blend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Naval Research Board, Defense Research and Development Organization (NRB-DRDO), New Delhi for financial support under Project No. 259/Mat./11–12, providing the instrumentation facility for electrical characterization. Authors also thanks to management of VIT University for providing SEM DST-FIST facility.


  1. 1.
    F.N. Cogswell, Thermoplastic Aromatic Polymer Composites, 1st edn. (Jaic Publishing House, Mumbai, 1995), pp. 132–156Google Scholar
  2. 2.
    Z. Zhong, Q. Cao, X. Wang, N. Wu, Y. Wang, Ionics 18, 47 (2012)CrossRefGoogle Scholar
  3. 3.
    V.S. Sangawar, N.A. Moharil, Chem. Sci. Trans. 1(2), 447 (2012)CrossRefGoogle Scholar
  4. 4.
    G.K. Sah, A.K. Gupta, Nanosyst. Phy. Chem. Math. 4(2), 288 (2013)Google Scholar
  5. 5.
    S. Lavina, E. Negro, G. Pace, S. Gross, G. Depaoli, M. Vidali, V.D. Noto, J. Non-Cryst. Solids 353, 2878 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Rajendran, T. Uma, Mater. Lett. 44, 242 (2000)CrossRefGoogle Scholar
  7. 7.
    A.M. Stephan, N.G. Renganathan, T.P. Kumar, R. Thirunakaran, S. Pitchumani, J. Shrisudersan, N. Muniyandi, Soild State Ionics 130, 123 (2000)CrossRefGoogle Scholar
  8. 8.
    Z. Zhong, Q. Cao, X. Wang, N. Wu, Y. Wang, Ionics 18, 47 (2012)CrossRefGoogle Scholar
  9. 9.
    N.H. Idris, J. Wang, S. Chou, C. Zhong, M.M. Rahaman, H. Liu, J. Mater. Res. 26(7), 860 (2011)CrossRefGoogle Scholar
  10. 10.
    D.J.S. Abdullah Audeh, J.B. Alcázar, C.V. Barbosa, V.N.L. Carreño, C.A. Oropesa Avellaoneda, Polímeros 26(24), 8 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Qian, N. Gu, X. Yang, E. Wang, S. Dong, Electrochim. Acta 46, 1829 (2001)CrossRefGoogle Scholar
  12. 12.
    S. Honmute, A. Lagashetty, A. Venkataraman, Indian J. Appl. Res. 3(8), 91 (2013)CrossRefGoogle Scholar
  13. 13.
    E.M. Fahmi, A. Ahmad, N.N.M. Nazeri, H. Hamzahi, H. Razali, M.Y.A. Rahman, Int. J. Electrochem. Sci. 7, 5798 (2012)Google Scholar
  14. 14.
    E.M. Fahmi, A. Ahmad, M.Y.A. Rahaman, H. Hamzah, J. Solid State Electrochem. 16, 2487 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Sanil, A. Benchirouf, S. Palaniyappan, R. Ramalingama, R. Sharma, C. Muller, O. Kanoun, Proc IEEE Int Instrum Meas Technol Conf 658, 445 (2014)Google Scholar
  16. 16.
    T.W. Smith, M.A. Abkowitz, G.C. Conway, D.J. Luca, Macromolecules 29, 5042 (1996)CrossRefGoogle Scholar
  17. 17.
    R.J. Sengwa, S. Sankhla, Polymer 48, 2737 (2007)CrossRefGoogle Scholar
  18. 18.
    S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Exp. Polym. Lett. 4(5), 300 (2010)CrossRefGoogle Scholar
  19. 19.
    H.M.E. Ghanem, S.A. Jawad, M.H. Al-Saleh, Y.A. Hussain, W. Salah, Phys. B 418, 41 (2013)CrossRefGoogle Scholar
  20. 20.
    G.M. Joshi, M.T. Cuberes, Ionics 19, 947 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Qiao, Z. Wei, H. Yang, L. Zhu, X.A. Yan, J. Nanomater. 2009, 1 (2008)CrossRefGoogle Scholar
  22. 22.
    V. Patil, S. Power, M. Chougule, P. Godse, R. Sakhare, S. Sen, P. Joshi, J. Surf. Eng. Mater. Adv. Technol. 1, 35 (2011)Google Scholar
  23. 23.
    S. Ramesh, G. Bee, R.F. Louh, Y.K. Hou, P.Y. Sin, L.J. Yi, Sadhana Indian Acad. Sci. 35, 87 (2010)Google Scholar
  24. 24.
    S. Ramesh, C.W. Liew, Polym. Bull. 70, 1277 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Ramesh, K.H. Leen, K. Kumutha, A.K. Arof, Electrochem. Acta A 66, 1237 (2007)CrossRefGoogle Scholar
  26. 26.
    D.M. Correa, C.M. Costa, J.N. Pereira, M.M. Silva, G. Botelho, J.L.G. Ribelles, S.L. Mendez, Soild State Ionics 268, 54 (2014)CrossRefGoogle Scholar
  27. 27.
    G.M. Nasar, H.M. Osman, M.M. Omar, A.M. AbdElbary, Life Sci. J. 11(4), 127 (2014)Google Scholar
  28. 28.
    A.R. Polu, R. Kumar, Adv. Mater. Lett. 4(7), 543 (2013)Google Scholar
  29. 29.
    Y. Wang, R. Song, Y. Li, J. Shen, Surf. Sci. 530, 136 (2003)CrossRefGoogle Scholar
  30. 30.
    J.N. Jagtap, A.H. Ambre, Indian J. Eng. Mater. 13, 368 (2006)Google Scholar
  31. 31.
    S. Ramesh, C.W. Liew, E. Morris, R. Durairaj, Thermochim. Acta 511, 140 (2010)CrossRefGoogle Scholar
  32. 32.
    N.S. Choi, J.K. Park, Electrochim. Acta 46, 1453 (2001)CrossRefGoogle Scholar
  33. 33.
    H. Quan, D. Chen, X. Xie, H. Fan, Phys. Status Solidi 210(12), 2706 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Khutia, G.M. Joshi, K. Deshmukh, M. Pandey, Comp. Interf. 22(3), 167 (2015)CrossRefGoogle Scholar
  35. 35.
    G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)CrossRefGoogle Scholar
  36. 36.
    G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A 34, 1187 (2003)CrossRefGoogle Scholar
  37. 37.
    Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synth. Met. 156, 1139 (2006)CrossRefGoogle Scholar
  38. 38.
    I.A. Fadzallah, S.R. Majid, M.A. Careem, A.K. Arof, Ionics 20, 969 (2014)CrossRefGoogle Scholar
  39. 39.
    M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A. Ali Omer, Malays. Polym. J. 3(2), 24 (2008)Google Scholar
  40. 40.
    G.C. Psarras, Compos A 37, 1545 (2007)CrossRefGoogle Scholar
  41. 41.
    F.A. He, K.H. Lam, J.T. Fan, L.W. Chan, Polym. Test. 32, 927 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Polymer Nanocomposite Laboratory, Material Physics Division, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations