Skip to main content
Log in

Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have prepared poly vinyl chloride (PVC)/poly-methyl methacrylate (PMMA) blend with loading of Nickel oxide (NiO) by solution cast technique. X-ray diffraction reveals the interaction between NiO, PVC and PMMA in the blend form. The weak interaction between PVC, PMMA and NiO was confirmed by Fourier transform infrared spectroscopy. The miscibility of PVC and PMMA has been confirmed by differential scanning calorimetry. The results demonstrate that the 2 wt% NiO loaded PVC/PMMA blend exhibits lowest crystallinity which leads to better NiO dispersion, also observed by atomic force microscopy and scanning electron microscopy. The performance of electrical properties were evaluated under wide band of frequency (10–107 Hz) as a function of DC bias voltage (0–25 V). The dielectric property was characterized via electrical modulus formalism. The present blend systems show good dielectric property as well as considerable conductivity which differs by frequency and DC bias. The variation of AC conductivity as a function of frequency and DC bias shows plateau shape at higher frequency which obeys Jonscher’s power law. It demonstrates that the AC electrical conductivity is directly proportional to the applied DC bias potential. It may be developed for electrolyte application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.N. Cogswell, Thermoplastic Aromatic Polymer Composites, 1st edn. (Jaic Publishing House, Mumbai, 1995), pp. 132–156

    Google Scholar 

  2. Z. Zhong, Q. Cao, X. Wang, N. Wu, Y. Wang, Ionics 18, 47 (2012)

    Article  Google Scholar 

  3. V.S. Sangawar, N.A. Moharil, Chem. Sci. Trans. 1(2), 447 (2012)

    Article  Google Scholar 

  4. G.K. Sah, A.K. Gupta, Nanosyst. Phy. Chem. Math. 4(2), 288 (2013)

    Google Scholar 

  5. S. Lavina, E. Negro, G. Pace, S. Gross, G. Depaoli, M. Vidali, V.D. Noto, J. Non-Cryst. Solids 353, 2878 (2007)

    Article  Google Scholar 

  6. S. Rajendran, T. Uma, Mater. Lett. 44, 242 (2000)

    Article  Google Scholar 

  7. A.M. Stephan, N.G. Renganathan, T.P. Kumar, R. Thirunakaran, S. Pitchumani, J. Shrisudersan, N. Muniyandi, Soild State Ionics 130, 123 (2000)

    Article  Google Scholar 

  8. Z. Zhong, Q. Cao, X. Wang, N. Wu, Y. Wang, Ionics 18, 47 (2012)

    Article  Google Scholar 

  9. N.H. Idris, J. Wang, S. Chou, C. Zhong, M.M. Rahaman, H. Liu, J. Mater. Res. 26(7), 860 (2011)

    Article  Google Scholar 

  10. D.J.S. Abdullah Audeh, J.B. Alcázar, C.V. Barbosa, V.N.L. Carreño, C.A. Oropesa Avellaoneda, Polímeros 26(24), 8 (2014)

    Article  Google Scholar 

  11. X. Qian, N. Gu, X. Yang, E. Wang, S. Dong, Electrochim. Acta 46, 1829 (2001)

    Article  Google Scholar 

  12. S. Honmute, A. Lagashetty, A. Venkataraman, Indian J. Appl. Res. 3(8), 91 (2013)

    Article  Google Scholar 

  13. E.M. Fahmi, A. Ahmad, N.N.M. Nazeri, H. Hamzahi, H. Razali, M.Y.A. Rahman, Int. J. Electrochem. Sci. 7, 5798 (2012)

    Google Scholar 

  14. E.M. Fahmi, A. Ahmad, M.Y.A. Rahaman, H. Hamzah, J. Solid State Electrochem. 16, 2487 (2012)

    Article  Google Scholar 

  15. A. Sanil, A. Benchirouf, S. Palaniyappan, R. Ramalingama, R. Sharma, C. Muller, O. Kanoun, Proc IEEE Int Instrum Meas Technol Conf 658, 445 (2014)

    Google Scholar 

  16. T.W. Smith, M.A. Abkowitz, G.C. Conway, D.J. Luca, Macromolecules 29, 5042 (1996)

    Article  Google Scholar 

  17. R.J. Sengwa, S. Sankhla, Polymer 48, 2737 (2007)

    Article  Google Scholar 

  18. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Exp. Polym. Lett. 4(5), 300 (2010)

    Article  Google Scholar 

  19. H.M.E. Ghanem, S.A. Jawad, M.H. Al-Saleh, Y.A. Hussain, W. Salah, Phys. B 418, 41 (2013)

    Article  Google Scholar 

  20. G.M. Joshi, M.T. Cuberes, Ionics 19, 947 (2013)

    Article  Google Scholar 

  21. H. Qiao, Z. Wei, H. Yang, L. Zhu, X.A. Yan, J. Nanomater. 2009, 1 (2008)

    Article  Google Scholar 

  22. V. Patil, S. Power, M. Chougule, P. Godse, R. Sakhare, S. Sen, P. Joshi, J. Surf. Eng. Mater. Adv. Technol. 1, 35 (2011)

    Google Scholar 

  23. S. Ramesh, G. Bee, R.F. Louh, Y.K. Hou, P.Y. Sin, L.J. Yi, Sadhana Indian Acad. Sci. 35, 87 (2010)

    Google Scholar 

  24. S. Ramesh, C.W. Liew, Polym. Bull. 70, 1277 (2013)

    Article  Google Scholar 

  25. S. Ramesh, K.H. Leen, K. Kumutha, A.K. Arof, Electrochem. Acta A 66, 1237 (2007)

    Article  Google Scholar 

  26. D.M. Correa, C.M. Costa, J.N. Pereira, M.M. Silva, G. Botelho, J.L.G. Ribelles, S.L. Mendez, Soild State Ionics 268, 54 (2014)

    Article  Google Scholar 

  27. G.M. Nasar, H.M. Osman, M.M. Omar, A.M. AbdElbary, Life Sci. J. 11(4), 127 (2014)

    Google Scholar 

  28. A.R. Polu, R. Kumar, Adv. Mater. Lett. 4(7), 543 (2013)

    Google Scholar 

  29. Y. Wang, R. Song, Y. Li, J. Shen, Surf. Sci. 530, 136 (2003)

    Article  Google Scholar 

  30. J.N. Jagtap, A.H. Ambre, Indian J. Eng. Mater. 13, 368 (2006)

    Google Scholar 

  31. S. Ramesh, C.W. Liew, E. Morris, R. Durairaj, Thermochim. Acta 511, 140 (2010)

    Article  Google Scholar 

  32. N.S. Choi, J.K. Park, Electrochim. Acta 46, 1453 (2001)

    Article  Google Scholar 

  33. H. Quan, D. Chen, X. Xie, H. Fan, Phys. Status Solidi 210(12), 2706 (2013)

    Article  Google Scholar 

  34. M. Khutia, G.M. Joshi, K. Deshmukh, M. Pandey, Comp. Interf. 22(3), 167 (2015)

    Article  Google Scholar 

  35. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    Article  Google Scholar 

  36. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A 34, 1187 (2003)

    Article  Google Scholar 

  37. Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synth. Met. 156, 1139 (2006)

    Article  Google Scholar 

  38. I.A. Fadzallah, S.R. Majid, M.A. Careem, A.K. Arof, Ionics 20, 969 (2014)

    Article  Google Scholar 

  39. M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A. Ali Omer, Malays. Polym. J. 3(2), 24 (2008)

    Google Scholar 

  40. G.C. Psarras, Compos A 37, 1545 (2007)

    Article  Google Scholar 

  41. F.A. He, K.H. Lam, J.T. Fan, L.W. Chan, Polym. Test. 32, 927 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Naval Research Board, Defense Research and Development Organization (NRB-DRDO), New Delhi for financial support under Project No. 259/Mat./11–12, providing the instrumentation facility for electrical characterization. Authors also thanks to management of VIT University for providing SEM DST-FIST facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutia, M., Joshi, G.M. Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J Mater Sci: Mater Electron 26, 5475–5488 (2015). https://doi.org/10.1007/s10854-015-3104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3104-2

Keywords

Navigation