Facile and template-free synthesis of spherical Cu2O as anode materials for lithium-ion batteries

  • Zhongli Hu
  • Hongdong Liu


In this work, we report the synthesis of spherical Cu2O through a facile and template-free solution-based chemical precipitation method at 60 °C. The crystal structure, surface morphology, and electrochemical performance of spherical Cu2O were investigated using X-ray diffraction, scanning electron microscopy, galvanostatic charge/discharge and cyclic voltammetry techniques, respectively. As anode materials for lithium-ion batteries, spherical Cu2O not only exhibits high cycling stability but also excellent reversibility.


Cu2O Anode Material Coulombic Efficiency Charge Capacity Solid Electrolyte Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Introduction of Talent Project (R2013CJ06) and General Project (Y2013CJ27) of Chongqing University of Arts and Sciences, Postgraduate Innovation Foundation of Chongqing University of Technology (YCX2014213).


  1. 1.
    H. Yu, C. Guan, X. Rui, B. Ouyang, B. Yadian, Y. Huang, H. Zhang, H.E. Hoster, H.J. Fan, Q. Yan, Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale 6, 10556–10561 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang, Y. Qian, Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale 5, 2442–2447 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19–26 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Zhou, J. Shi, Y. Liu, Q. Su, J. Zhang, G. Du, Microwave-assisted synthesis of hollow CuO–Cu2O nanospherical/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Deng, Q. Zhang, Q. Zhao, L. Ma, M. Ding, X. Xu, Effects of architectures and H2O2 additions on the photocatalytic performance of hierarchical Cu2O nanostructures. Nanoscale Res. Lett. (2015). doi: 10.1186/s11671-014-0726-x Google Scholar
  6. 6.
    Y. Sui, Y. Zeng, L. Fu, W. Zheng, D. Li, B. Liu, B. Zou, Low-temperature synthesis of porous hollow structured Cu2O for photocatalytic activity and gas sensor application. RSC Adv. 3, 18651–18660 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.-K. Hsu, H.-H. Lin, M.-H. Chen, Y.-C. Chen, Y.-G. Lin, Polarity-dependant performance of p-Cu2O/n-ZnO heterojunction solar cells. Electrochim. Acta 144, 295–299 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Hu, Y. Huang, F. Zhang, Q. Chen, CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5, 4186–4190 (2013)CrossRefGoogle Scholar
  9. 9.
    J.H. Shin, S.H. Park, S.M. Hyun, J.W. Kim, H.M. Park, J.Y. Song, Electrochemical flow-based solution solid growth of the Cu2O nanorod array: potential application to lithium ion batteries. Phys. Chem. Chem. Phys. 16, 18226–18232 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.H. Lee, I.C. Leu, S.T. Chang, C.L. Liao, K.Z. Fung, The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium. Electrochim. Acta 50, 553–559 (2004)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, X. Wang, L. Zeng, S. Song, D. Liu, Green and controlled synthesis of Cu2O-graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach. Dalton Trans. 41, 4316–4319 (2012)CrossRefGoogle Scholar
  12. 12.
    J.C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Liu, Y. Zhou, S.A. Kulinich, J.-J. Li, L.-L. Han, S.-Z. Qiao, X.-W. Du, Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. J. Mater. Chem. A 1, 302–307 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 110, 13829–13834 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Chen, S. Song, D. Xue, Chemical reaction controlled synthesis of Cu2O hollow octahedra and core-shell structures. CrystEngComm 15, 10028–10033 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Chen, Y. Wang, Y. Nuli, Y. Yu, P. Gao, Q. Chen, L. Wei, N. Hu, Z. Yang, R. Gao, L. Zhang, Y. Zhang, Cu2O nanowires as anode materials for Li-ion rechargeable batteries. Sci. China Technol. Sci. 57, 1073–1076 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Liu, G. Chen, G. He, W. Zhang, Synthesis of starfish-like Cu2O nanocrystals through gamma-irradiation and their application in lithium-ion batteries. J. Nanopart. Res. 13, 2705–2713 (2011)CrossRefGoogle Scholar
  18. 18.
    L.J. Fu, J. Gao, T. Zhang, Q. Cao, L.C. Yang, Y.P. Wu, R. Holze, H.Q. Wu, Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. J. Power Sources 174, 1197–1200 (2007)CrossRefGoogle Scholar
  19. 19.
    X. Liu, W. Ji, J. Liang, L. Peng, W. Hou, MoO2@carbon hollow microsphericals with tunable interiors and improved lithium-ion battery anode properties. Phys. Chem. Chem. Phys. 16, 20570–20577 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.-S. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 4215–4220 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Liu, X. Zhao, Y. Tian, D. Zhao, C. Hu, M. Cao, A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Phys. Chem. Chem. Phys. 15, 8831–8837 (2013)CrossRefGoogle Scholar
  22. 22.
    H.-E. Wang, J. Jin, Y. Cai, J.-M. Xu, D.-S. Chen, X.-F. Zheng, Z. Deng, Y. Li, I. Bello, B.-L. Su, Facile and fast synthesis of porous TiO2 sphericals for use in lithium ion batteries. J. Colloid Interface Sci. 417, 144–151 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Shang, D.F. Zhang, L. Guo, CuCl-intermediated construction of short-range-ordered Cu2O mesoporous sphericals with excellent adsorption performance. J. Mater. Chem. 22, 856–861 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19–26 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Wang, K. Zhang, Z. Hu, W. Duan, F. Cheng, J. Chen, Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 7, 199–208 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Chen, D. Xue, Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property. CrystEngComm 15, 1739–1746 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China
  2. 2.Research Institute for New Materials TechnologyChongqing University of Arts and SciencesChongqingPeople’s Republic of China

Personalised recommendations