Some physical investigations on In-doped ZnO films prepared by RF magnetron sputtering using powder compacted target

  • B. Khalfallah
  • F. Chaabouni
  • M. Abaab


Indium-doped zinc oxide thin films (IZO) at different percentages (2–5 wt%) were deposited on p-Si(100) and glass substrates at room temperature using powder compacted target. The effect of In concentration on the structural, optical and electrical properties of the IZO thin films were investigated. XRD analysis revealed that all films consist of single phase ZnO and were well crystallised in würtzite phase with the crystallites preferentially oriented towards (002) direction parallel to c-axis. Doping by Indium resulted a noticeably change in the optical band gap energy. Hall effect measurements show that all films present an n-type conduction. The lowest obtained resistivity of the IZO films is 5.35 × 10− 3 Ω cm. From the IV and CV characteristics, we investigated the ideality factor, the donor concentrations, the barrier height and the series resistance of the ZnO/p-Si heterojunction. Finally, all results have been discussed in terms of the Indium doping concentration.


Barrier Height Ideality Factor Heterojunction Diode Electrostatic Spray Deposition Weighted Arithmetic Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Ferro, J.A. Rodriguez, P. Bertrand, Thin Solid Films 516, 2225 (2008)CrossRefGoogle Scholar
  2. 2.
    V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys. 102, 23501 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Girtan, M. Socol, B. Pattier, M. Sylla, A. Stanculescu, Thin Solid Films 519, 573 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Appl. Phys. Lett. 76, 259 (2000)CrossRefGoogle Scholar
  5. 5.
    S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 49, 394 (1986)CrossRefGoogle Scholar
  6. 6.
    J. Wang, W. Chen, M. Wang, J. Alloys Compd. 449, 44 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Saidani, M. Zaabat, M.S. Aida, A. Benaboud, S. Benzitouni, A. Boudine, Superlattices Microstruct. 75, 47–53 (2014)CrossRefGoogle Scholar
  8. 8.
    P.K. Ooi, S.S. Ng, M.J. Abdullah, Z. Hassan, Mater. Lett. 116, 396–398 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Charpentier, R. Boukhicha, P. Prod’homme, T. Emeraud, J.-F. Lerat, P.R. Cabarrocas, E.V. Johnson, Sol. Energy Mater. Sol. Cells 125, 223–232 (2014)CrossRefGoogle Scholar
  10. 10.
    H.C. Wua, Y.C. Peng, C.C. Chen, Opt. Mater. 35, 509–515 (2013)CrossRefGoogle Scholar
  11. 11.
    A.P. Rambu, N. Iftimie, V. Nica, J. Mater. Sci. 47, 6979–6985 (2012)CrossRefGoogle Scholar
  12. 12.
    L.P. Peng, L. Fang, X.F. Yang, H.R. Ruan, Y.J. Li, Q.L. Huang, C.Y. Kong, Phys. E 41, 1819–1823 (2009)CrossRefGoogle Scholar
  13. 13.
    S.N.F. Hasim, M.A.A. Hamid, R. Shamsudin, A. Jalar, J. Phys. Chem. Solids 70, 1501 (2009)CrossRefGoogle Scholar
  14. 14.
    J.Y. Lee, B.R. Jang, J.H. Lee, H.S. Kim, H.K. Cho, J.Y. Moon, H.S. Lee, W.J. Lee, J.W. Baek, Thin Solid Films 517, 4086 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Wienke, A.S. Booij, Thin Solid Films 516, 4508 (2008)CrossRefGoogle Scholar
  16. 16.
    D.H. Chi, L.T.T. Binh, N.T. Binh, L.D. Khanh, N.N. Long, Appl. Surf. Sci. 252, 2770 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Maldonado, S. Tirado-Guerra, M. Meléndez-Lira, Sol. Energy Mater. Sol. Cells 90, 742–752 (2006)CrossRefGoogle Scholar
  18. 18.
    M.L. Olvera, A. Maldonado, R. Asomoza, M. Konagai, M. Asomoza, Thin Solid Films 229, 196 (1993)CrossRefGoogle Scholar
  19. 19.
    L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, J. Alloy. Compd. 484, 575–579 (2009)CrossRefGoogle Scholar
  20. 20.
    D.R. Sahu, Microelectron. J. 38, 1252 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Ye, X.M. Cai, F.P. Dai, D.P. Zhang, P. Fan, L.J. Liu, Phys. B Condens. Matter 64, 407 (2012)Google Scholar
  22. 22.
    K. Djessas, I. Bouchama, J.L. Gauffier, Z.B. Ayadi, Thin Solid Films 555, 28–32 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  24. 24.
    O.S. Heavens, Optical properties of thin solid films (Butterworths, London, 1950)Google Scholar
  25. 25.
    B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. B 71, 301 (2000)CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffractions, vol. 3 (Prentice Hall, Engle-wood Cliffs, 2001)Google Scholar
  27. 27.
    F. Conchon, P.O. Renaul, E. Le Bourhis, C. Krauss, P. Goudeau, E. Barthel, SYu. Grachev, E. Sondergard, V. Rondeau, R. Gy, R. Lazzari, J. Jupille, N. Brun, Thin Solid Films 519, 1563–1567 (2010)CrossRefGoogle Scholar
  28. 28.
    G.C. Xie, L. Fang, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Phys. Proced. 32, 651–657 (2012)CrossRefGoogle Scholar
  29. 29.
    J.I. Pankove, Optical processes in semiconductors (Dover, New York, 1971)Google Scholar
  30. 30.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  31. 31.
    A. Di Trolio, E.M. Bauer, G. Scavia, C. Veroli, J. Appl. Phys. 105, 113109 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578–2583 (2008)Google Scholar
  33. 33.
    K. Boubaker, Eur. Phys. J. Plus. 10, 126 (2011).Google Scholar
  34. 34.
    S. Sebastian, M.A. Khadar, Indian Acad. Sci. 27, 207–212 (2004)Google Scholar
  35. 35.
    E. Marquez, J.B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, R. Swanepoel, Thin Solid Films 254, 83 (1995)CrossRefGoogle Scholar
  36. 36.
    R. Swanepoel, J. Phys. E Sci. Instrum. 17, 896 (1984)CrossRefGoogle Scholar
  37. 37.
    Ambika, P.B. Barman, Phys. B 405, 822 (2010)CrossRefGoogle Scholar
  38. 38.
    H.G. Tompkins, W.A. McGahan, Spectroscopic ellipsometry and reflectometry (Wiley, New York, 1999)Google Scholar
  39. 39.
    E.H. Rhoderick, R.H. Williams, Metal–semiconductor contacts, 2nd edn. (Clarendon, Oxford, 1988)Google Scholar
  40. 40.
    S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981), p. 124Google Scholar
  41. 41.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  42. 42.
    H. Sheng, S. Muthukumar, N.W. Emanetoglu, Y. Lu, Appl. Phys. Lett. 80, 2132 (2002)CrossRefGoogle Scholar
  43. 43.
    S. Aydogan, K. Cınar, H. Asıl, C. Coskun, A. Turut, J. Alloys Compd. 476, 913–918 (2009)CrossRefGoogle Scholar
  44. 44.
    C. Nuhoglu, Y. Gullen, Vacuum 84, 812 (2010)CrossRefGoogle Scholar
  45. 45.
    X. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, W. Zhang, Microelectron. Eng. 93, 5–9 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, ENITUniversité Tunis El ManarTunisTunisia

Personalised recommendations