Advertisement

Luminescence and EPR studies of ultraviolet light emitting La2Zr2O7:Gd3+ phosphor powder

  • Vijay Singh
  • G. Sivaramaiah
  • J. L. Rao
  • R. Senthil Kumaran
  • Pramod K. Singh
  • Tae-Su Kim
  • Lark Kyo Kim
Article

Abstract

The Gd3+ doped La2Zr2O7 phosphor has been prepared by solution combustion method and characterized using powder X-ray diffraction, scanning electron microscopy, electron paramagnetic resonance (EPR) and photoluminescence spectroscopy. The EPR spectrum of Gd3+ doped La2Zr2O7 exhibits resonance signals having effective g values at g ≈ 1.84, 1.93, 2.0, 3.00, 3.85 and 6.12. Upon UV light excitation (274 nm), the phosphor exhibits a strong and sharp UV emission at 312.5 nm, which is ascribed to 6P7/2 → 8S7/2 transition of Gd3+ ions. EPR and optical investigations of the sample confirm the presence of Gd3+ in the La2Zr2O7 matrix.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Electron Paramagnetic Resonance Study Hyperfine Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul (South Korea).

References

  1. 1.
    Y.H. Li, J. Wen, Y.Q. Wang, Z.G. Wang, M. Tang, J.A. Valdez, K.E. Sickafus, Nucl. Instrum. Methods B 287, 130 (2012)CrossRefGoogle Scholar
  2. 2.
    Y.H. Lee, H.S. Sheu, H.-C.I. Kao, Mater. Chem. Phys. 124, 145 (2010)CrossRefGoogle Scholar
  3. 3.
    B.P. Mandal, A. Banerji, V. Sathe, S.K. Deb, A.K. Tyagi, J. Solid State Chem. 180, 2643 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Lian, L.M. Wang, R.G. Haire, K.B. Helean, R.C. Ewing, Nucl. Instrum. Methods B 218, 236 (2004)CrossRefGoogle Scholar
  5. 5.
    K.-J. Hu, Z.-G. Liu, J.-Y. Wang, C. Zhu, J.-H. Ouyang, J. Alloy. Compd. 576, 177 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Liu, Z. Ma, F.-C. Wang, S.-Z. Zhu, Q. Xu, Rare Metal. Mater. Eng. 41, 483 (2012)Google Scholar
  7. 7.
    S. Li, Z.-G. Liu, J.-H. Ouyang, Int. J. Appl. Ceram. Technol. 9, 149 (2012)CrossRefGoogle Scholar
  8. 8.
    Masayoshi. Uno, Atsuko. Kosuga, Mihoko. Okui, Kentarou. Horisaka, Hiroaki. Muta, Ken. Kurosaki, Shinsuke. Yamanaka, J. Alloy. Compd. 420, 291 (2006)CrossRefGoogle Scholar
  9. 9.
    K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartmann, Science 289, 748 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Chaudhry, A. Canning, R. Boutchko, M.J. Weber, N. Grnbech-Jensen, S.E. Derenzo, J. Appl. Phys. 109, 083708 (2011)CrossRefGoogle Scholar
  11. 11.
    Z.-G. Liu, J.-H. Ouyang, Y. Zhou, X.L. Xia, Mater. Des. 30, 3784 (2009)CrossRefGoogle Scholar
  12. 12.
    O. Fabrichnaya, M.J. Kriegel, J. Seidel, G. Savinykh, L.P. Ogorodova, I.A. Kiseleva, H.J. Seifert, Thermochim. Acta 526, 50 (2011)CrossRefGoogle Scholar
  13. 13.
    A.T. Nelson, M.M. Giachino, J.C. Nino, K.J. McClellan, J. Nucl. Mater. 444, 385 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Yugeswaran, A. Kobayashi, B. Selvan, P.V. Ananthapadmanabhan, Vacuum 88, 139 (2013)CrossRefGoogle Scholar
  15. 15.
    X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, D. Stöver, J. Am. Ceram. Soc. 84, 2086 (2001)CrossRefGoogle Scholar
  16. 16.
    K. Bobzin, E. Lugscheider, N. Bagcivan, High Temp. Mater. Process. 10, 45 (2006)CrossRefGoogle Scholar
  17. 17.
    Beichen. Duan, Jiachi. Zhang, Xue. Liu, Qi. Yuan, Yuhua. Wang, J. Alloy. Compd. 587, 318 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Holliday, S. Finkeldei, S. Neumeier, C. Walther, D. Bosbach, T. Stumpf, J. Nucl. Mater. 433, 479 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Zhang, M. Lü, G. Zhou, S. Wang, Y. Zhou, J. Phys. Chem. Solids 67, 2430 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Tong, S. Zhao, W. Feng, L. Ma, J. Alloy. Compd. 550, 268 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Hachani, B. Moine, A. El-akrmi, M. Férid, Opt. Mater. 31, 678 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Kondo, T. Hirai, S. Hashimoto, J. Lumin. 94–95, 311 (2001)CrossRefGoogle Scholar
  23. 23.
    I. Kudryavtseva, P. Liblik, A. Lushchik, A. Maaroos, E. Vasil’chenko, Z. Azmaganbetova, T. Nurakhmetov, B. Toxanbayev, J. Lumin. 129, 1890 (2009)CrossRefGoogle Scholar
  24. 24.
    R.M. MacKie, Radiat. Prot. Dosim. 91, 15 (2000)CrossRefGoogle Scholar
  25. 25.
    R.C. Ropp, Luminescence and the Solid State (Elsevier, Amsterdam, 1991)Google Scholar
  26. 26.
    J.A. Parrish, K.F. Jaenicke, J. Invest. Dermatol. 76, 359 (1981)CrossRefGoogle Scholar
  27. 27.
    W.L. Morison, Semin. Cutan. Med. Surg. 18, 297 (1999)CrossRefGoogle Scholar
  28. 28.
    V. Singh, R.P.S. Chakradhar, J.L. Rao, D.-K. Kim, J. Lumin. 129, 755 (2009)CrossRefGoogle Scholar
  29. 29.
    V. Singh, V. Natarajan, J.-J. Zhu, Opt. Mater. 29, 1447 (2007)CrossRefGoogle Scholar
  30. 30.
    T.K. Gundu Rao, S.V. Moharil, Radiat. Meas. 42, 35 (2007)CrossRefGoogle Scholar
  31. 31.
    Chunjie. Wang, Yue. Wang, Xizhi. Fan, Wenzhi. Huang, Binglin. Zou, Xueqiang. Cao, Surf. Coat. Technol. 212, 88 (2012)CrossRefGoogle Scholar
  32. 32.
    Q. Du, G. Zhou, H. Zhou, Z. Yang, Opt. Mater. 35, 257 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Zhang, Y. Jishun, X. Cheng, S. Hou, J. Alloy. Compd. 525, 78 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Nair, P. Nair, E.B.M. Doesburg, J.G. Vanommen, J.R.H. Ross, A.J. Burggraaf, F. Mizukami, J. Mater. Sci. 33, 4517 (1998)CrossRefGoogle Scholar
  35. 35.
    S.B. Alaparthi, L. Lu, Y. Tian, Y. Mao, Mater. Res. Bull. 49, 114 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)Google Scholar
  37. 37.
    S.A. Al’tshuler, B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974)Google Scholar
  38. 38.
    S. Rada, V. Dan, M. Rada, E. Culea, J. Non-Cryst. Solids 356, 474 (2010)CrossRefGoogle Scholar
  39. 39.
    D.L. Griscom, J. Non-Cryst. Solids 40, 211 (1980)CrossRefGoogle Scholar
  40. 40.
    A. Murali, R.P.S. Chakradhar, J.L. Rao, Phys. B 364, 142 (2005)CrossRefGoogle Scholar
  41. 41.
    Ulrich. Vetter, Jan. Zenneck, Hans. Hofsäss, Appl. Phys. Lett. 83, 2145 (2003)CrossRefGoogle Scholar
  42. 42.
    D.S. Thakare, S.K. Omanwar, P.L. Muthal, S.M. Dhopte, V.K. Kondawar, S.V. Moharil, Phys. Status Solidi (a) 201, 574 (2004)CrossRefGoogle Scholar
  43. 43.
    Y.-C. Li, Y.-H. Chang, Y.-S. Chang, Y.-J. Lin, C.-H. Laing, J. Phys. Chem. C 111, 10682 (2007)CrossRefGoogle Scholar
  44. 44.
    K.K. Rao, N. Anantharamulu, M. Salagram, M. Vithal, Spectrochem. Acta Part A 66, 646 (2007)CrossRefGoogle Scholar
  45. 45.
    R. Kripal, I. Mishra, Phys. B 405, 425 (2010)CrossRefGoogle Scholar
  46. 46.
    A.D. Prokhorov, A.A. Prokhorov, L.F. Chernysh, V.P. Dyakonov, H. Szymczak, J. Magn. Magn. Mater. 323, 1546 (2011)CrossRefGoogle Scholar
  47. 47.
    S.C. Gedam, Res. J. Eng. Sci. 1, 6 (2013)Google Scholar
  48. 48.
    G. Sivaramaiah, S. Sailaja, J.L. Rao, B. Sudhakar Reddy, Proc. Insa. 79, 153 (2013)Google Scholar
  49. 49.
    L.E. Iton, C.M. Brodbeck, S.L. Suib, G.D. Stucky, J. Chem. Phys. 79, 1185 (1983)CrossRefGoogle Scholar
  50. 50.
    I.V. Chepeleva, V.N. Lazukin, Dokl. Akad. Nauk SSSR 226, 311 (1976)Google Scholar
  51. 51.
    R.C. Nicklin, J.K. Johnstone, R.G. Barnes, D.R. Wilder, J. Chem. Phys. 59, 1652 (1973)CrossRefGoogle Scholar
  52. 52.
    L. Cugunov, J. Kliava, J. Phys. C 15, L933 (1982)CrossRefGoogle Scholar
  53. 53.
    H.J.A. Koopmans, M.M. Eprik, B. Nieuwenhuijse, P.J. Gellings, Phys. Status Solidi (b) 120, 745 (1983)CrossRefGoogle Scholar
  54. 54.
    C.M. Brodbeck, L.E. Iton, J. Chem. Phys. 83, 4284 (1985)CrossRefGoogle Scholar
  55. 55.
    C. Rudowicz, Magn. Res. Rev. 13, 1 (1987)Google Scholar
  56. 56.
    C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001)CrossRefGoogle Scholar
  57. 57.
    V. Singh, G. Sivaramaiah, J.L. Rao, S.J. Dhoble, S.H. Kim, J. Electron. Mater. 44, 121 (2015)CrossRefGoogle Scholar
  58. 58.
    A.H. Piksis, G.H. Dieke, H.M. Crosswhite, J. Chem. Phys. 47, 5083 (1967)CrossRefGoogle Scholar
  59. 59.
    K. Binnemans, C. Görller-Walrand, J.L. Adam, Chem. Phys. Lett. 280, 333 (1997)CrossRefGoogle Scholar
  60. 60.
    V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, Phys. B 416, 101 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vijay Singh
    • 1
  • G. Sivaramaiah
    • 2
  • J. L. Rao
    • 3
  • R. Senthil Kumaran
    • 4
  • Pramod K. Singh
    • 5
  • Tae-Su Kim
    • 1
  • Lark Kyo Kim
    • 6
  1. 1.Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsGovernment College for Men (Autonomous)KadapaIndia
  3. 3.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  4. 4.Department of Biological EngineeringKonkuk UniversitySeoulRepublic of Korea
  5. 5.Materials Research Laboratory, School of Basic Sciences and ResearchSharda UniversityGreater NoidaIndia
  6. 6.School of Electrical and Electronic EngineeringShandong University of TechnologyZiboChina

Personalised recommendations