Advertisement

A practical and feasible way to synthesize Magnéli phase conductive nanowires

  • Shuang Qian
  • Jian Mao
Article

Abstract

This paper employs an original method to synthesize nanostructured Magnéli phases TinO2n−1 via a both practical and feasible way. The whole preparation process entails two steps including acquiring ceramic TiO2 nanowires under hydrothermal treatment followed by subsequent heat treatment at 600 °C and reducing the nanowires through carbothermal reduction by using PEG-600 as organic carbon resource. Ti6O11 nanorods and Ti9O17 nanowires with slight carbon coating were successfully fabricated respectively at 1000 and 850 °C, which exhibit high electrical conductivity behavior at room temperature. The SEM and TEM images confirm that the nanowires transformed to nanorods at increased temperature while still remain as 1D nanostructures. Compared to that of the non-conductive TiO2 precursor, the powder resistivity of TinO2n−1 nanowires dramatically decrease down to 1.74 × 10−2 Ω m.

Keywords

TiO2 Oxygen Reduction Reaction Hydrothermal Reaction Carbothermal Reduction Transmission Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)CrossRefGoogle Scholar
  2. 2.
    N.G. Park, G. Schlichthorl, J. Van de Lagemaat, H.M. Cheong, A. Mascarenhas, A.J. Frank, J. Phys. Chem. B 103, 3308 (1999)CrossRefGoogle Scholar
  3. 3.
    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, J. Mao, J. Mater. Sci. Mater. Electron. 25, 5153 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Harada, K. Tanaka, H. Inui, J. Appl. Phys. 108, 083703-1 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Yun, M. Hirohashi, K. Sato, Mater. Trans. 47, 1449 (2006)CrossRefGoogle Scholar
  7. 7.
    D.R. Regonini, A.C.E. Dent, C.R. Bowen, S.R. Pennock, J. Taylor, Mater. Lett. 65, 23 (2011)CrossRefGoogle Scholar
  8. 8.
    I. Slipukhina, M. Lezaic, Phys. Rev. B 90, 155133-1 (2014)CrossRefGoogle Scholar
  9. 9.
    W.-D. Zhu, C.-W. Wang, J.-B. Chen, X.-Q. Zhang, Mater. Res. Bull. 50, 79 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Yoshida, Y. Suzuki, S. Yoshikawa, R. Yoshida, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 2179 (2005)CrossRefGoogle Scholar
  11. 11.
    Z. Miao, X. Dongsheng, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Nano Lett. 2, 717 (2002)CrossRefGoogle Scholar
  12. 12.
    X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Tang, D. Zhou, Q. Zhang, Mater. Lett. 79, 42 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Y. Matsuda, K. Sagara, L. Hao, T. Otomitsu, H. Yoshida, Adv. Mater. Res. 415, 1291 (2012)Google Scholar
  15. 15.
    S. Tominaka, Chem. Commun. 48, 7949 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Tsumura, Y. Hattori, K. Kaneko, Y. Hirose, M. Inagaki, M. Toyoda, Desalination 169, 269 (2004)CrossRefGoogle Scholar
  17. 17.
    C. Hauf, R. Kniep, G. Pfaff, Journal of Materials Science 34, 1287 (1999)CrossRefGoogle Scholar
  18. 18.
    X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang et al., Electrochim. Acta 55, 5891 (2010)CrossRefGoogle Scholar
  19. 19.
    W.-Q. Han, Y. Zhang, Appl. Phys. Lett. 92, 203117-1 (2008)Google Scholar
  20. 20.
    V. Maneeratana, D. Portehault, J. Chaste, D. Mailly, M. Antonietti, C. Sanchez, Adv. Mater. 26, 2654 (2014)CrossRefGoogle Scholar
  21. 21.
    D. Portehault, V. Maneeratana, C. Candolfi, N. Oeschler, I. Veremchuk, Y. Grin et al., ACS Nano 5, 9052 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Chen, J. Mao, J. Mater. Sci. Mater. Electron. 25, 1284 (2014)CrossRefGoogle Scholar
  23. 23.
    V. Adamaki, F. Clemens, P. Ragulis, S.R. Pennock, J. Taylor, C.R. Bowen, J. Mater. Chem. A 2, 8328 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Zhu, Y. Liu, J. Ye, Y.X. Zhang, J. Mater. Sci. Mater. Electron. 24, 4853 (2013)CrossRefGoogle Scholar
  25. 25.
    W.Q. Han, X.L. Wang, Phys. Lett. 97, 243104-1 (2010)Google Scholar
  26. 26.
    J.R. Smith, F.C. Walsh, J. Appl. Electrochem. 28, 1021 (1998)CrossRefGoogle Scholar
  27. 27.
    C. Yao, F. Li, X. Lia, D. Xia, J. Mater. Chem. 22, 16560 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations