Advertisement

Study of room temperature LPG sensing behavior of polyaniline thin film synthesized by cost effective oxidative polymerization technique

  • Ravikiran B. Birajadar
  • Deepak Upadhye
  • Sandip Mahajan
  • J. C. Vyas
  • Ramphal Sharma
Article

Abstract

Polyaniline thin films doped with an inorganic acid were deposited on glass substrate using simple and cost effective oxidative polymerization technique. As-synthesized thin film of polyaniline was studied with different characterization techniques. The formation of polyaniline on glass substrate was confirmed by X-ray diffraction and UV spectroscopy. Surface morphological investigation was performed using scanning electron microscopy. Gas sensing behavior of polyaniline thin film was studied by I–V measurements before and after liquefied petroleum gas (LPG) exposure at room temperature, based on change in electrical resistance. The observed result shows polyaniline thin film sensor is efficient for LPG detection at room temperature.

Keywords

Polyaniline Emeraldine Base Emeraldine Salt Polyaniline Film Polyaniline Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial assistance from Board of Research in Nuclear Sciences (BRNS), Mumbai through Project Ref No. (2010/34/41/BRNS/1982) is gratefully acknowledged. One of the authors Ravikiran Birajadar would like to thank Prof. P. V. Sarode, Principal Government Polytechnic, Pune for their constant encouragement and support for pursuing research work.

References

  1. 1.
    B. Timmer, W. Olthuis, B. Albert, Sens. Actuators B 107, 666 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Santos, B.P. Serrini, O. Beirn, L. Manes, Sens. Actuators B 43, 154 (1997)CrossRefGoogle Scholar
  3. 3.
    C.M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Mater. Sci. Semicond. Process. 13, 1 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Ghosh, R. Sharma, A. Ghule, V. Taur, R.A. Joshi, D.J. Desale, Y.G. Gudage, K.M. Jadhav, S.H. Han, Sens. Actuators B 146, 69 (2010)CrossRefGoogle Scholar
  5. 5.
    E. Comini, Anal. Chim. Acta 568, 28 (2006)CrossRefGoogle Scholar
  6. 6.
    R. Sainz, A.M. Benito, M.T. Martınez, J.F. Galindo, J. Sotres, A.M. Baro, B. Corraze, O. Chauvet, A.B. Dalton, R.H. Baughman, W.K. Maser, Nanotechnology 16, S150 (2005)CrossRefGoogle Scholar
  7. 7.
    W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Science 297, 983 (2002)CrossRefGoogle Scholar
  8. 8.
    S.D. Patil, S.C. Raghavendra, M. Revansiddappa, P. Narsimha, M.V.N. Aabika, Prasad. Bull. Mater. Sci. 30, 89 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Ghosh, A. Sarkar, A.K. Meikap, S.K. Chattopadhyay, S.K. Chatterjee, M. Ghosh, J. Phys. D Appl. Phys. 39, 3047 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Kumar, S.K. Sharma, J. Mater. Sci. Mater. Electron. 23, 1260 (2012)CrossRefGoogle Scholar
  11. 11.
    D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, J. Mater. Sci. Mater. Electron. 24, 3526 (2013)CrossRefGoogle Scholar
  12. 12.
    U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta 614, 1 (2008)CrossRefGoogle Scholar
  13. 13.
    N.E. Agbor, J.P. Cresswell, M.C. Petty, A.P. Monkman, Sens. Actuators B 41, 137 (1997)CrossRefGoogle Scholar
  14. 14.
    V. Dixit, S.C.K. Misra, B.S. Sharma, Sens. Actuators B 104, 90 (2005)CrossRefGoogle Scholar
  15. 15.
    J.E. Torres, H. Huc, J.M. Saniger, Rev. Mex. Fis. 51, 482 (2005)Google Scholar
  16. 16.
    P.N. Bartlett, S.K. Ling-Chug, Sens. Actuators 20, 287 (1989)CrossRefGoogle Scholar
  17. 17.
    N.G. Deshpande, Y.G. Gudage, J.C. Vyas, F. Singh, R. Sharma, Nucl. Instrum. Methods Phys. Res. B 266, 2002 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Yan, T. Wei, Z. Fan, W. Qianb, M. Zhanga, X. Shena, F. Weib, J. Power Sources 195, 3041 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Vohra, M. Kumar, S.K. Mittal, M.L. Singla, J. Mater. Sci. Mater. Electron. 24, 1354 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Sens. Actuators B 190, 120 (2014)CrossRefGoogle Scholar
  21. 21.
    A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, J. Phys. D Appl. Phys. 39, 750 (2006)CrossRefGoogle Scholar
  22. 22.
    Z. Du, C. Li, L. Li, H. Yu, Y. Wang, T. Wang, J. Mater. Sci. Mater. Electron. 22, 418 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Srivastava, S.S. Sharma, S. Agrawal, S. Kumar, M. Singh, Y.K. Vijay, Synth. Met. 160, 529 (2010)CrossRefGoogle Scholar
  24. 24.
    D.S. Sutar, N. Padma, D.K. Aswal, S.K. Deshpande, S.K. Gupta, J.V. Yakhmi, Sens. Actuators B 128, 286 (2007)CrossRefGoogle Scholar
  25. 25.
    N.G. Deshpande, Y.G. Gudage, R.S. Devan, Y.R. Ma, Y.P. Lee, R. Sharma, Smart Mater. Struct. 18, 095010 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Nrata, L. Sun, Sens. Actuators A 40, 159 (1994)CrossRefGoogle Scholar
  27. 27.
    N.E. Agbor, M.C. Petty, A.P. Monkman, Sens. Actuators B 28, 173 (1995)CrossRefGoogle Scholar
  28. 28.
    D. Xie, Y. Jiang, W. Pan, D. Li, Z. Wu, Y. Li, Sens. Actuators B 81, 158 (2002)CrossRefGoogle Scholar
  29. 29.
    R.B. Birajadar, A. Ghosh, A. Ghule, F. Singh, R. Sharma, Sens. Actuators B 160, 1050 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ravikiran B. Birajadar
    • 1
    • 2
  • Deepak Upadhye
    • 2
    • 3
  • Sandip Mahajan
    • 2
    • 3
  • J. C. Vyas
    • 4
  • Ramphal Sharma
    • 2
    • 3
  1. 1.Government PolytechnicPuneIndia
  2. 2.Thin Film and Nanotechnology Laboratory, Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  3. 3.Department of NanotechnologyDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  4. 4.Technical Physics and Prototype Engineering DivisionBhabha Atomic Research CenterTrombay, MumbaiIndia

Personalised recommendations