Glucose sensing behavior of cobalt doped ZnO nanoparticles synthesized by co-precipitation method

  • G. Vijayaprasath
  • R. Murugan
  • J. Shankara Narayanan
  • V. Dharuman
  • G. Ravi
  • Y. Hayakawa


Pure and Zn1−xCoxO (x = 0.05, 0.10 and 0.15) nanoparticles were synthesized by co-precipitation method. Powder X-ray diffraction studies confirmed that pure and Co doped ZnO have a single phase nature with hexagonal wurtzite structure and Co2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO matrix. FTIR and EDS spectra results confirmed the incorporation of the dopants into the ZnO lattice structure. FESEM images showed the flower like morphology in ZnO and flowers are dispersed to grains in Co doped ZnO nanoparticles. The chemical composition of Zn0.90Co0.10O nanoparticles were confirmed by XPS. The XPS results clearly showed the existence of Co as a doping element into the ZnO crystalline lattice. Further, the synthesized Co doped ZnO nanoparticles have been used for electrochemical non-enzymatic glucose biosensing. The lowest detection limit of the proposed sensor was found to be 5 µM. The sensor selectively oxidizes glucose in the presence of other interfering compounds like l-dopa, ascorbic acid, hydrogen peroxide and uric acid.


Cobalt Acetate Binding Energy Position Glucose Oxidation Current Flowerlike Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors G. Ravi and G. Vijayaprasath have gratefully acknowledged the UGC [Ref. No. F. 41-933/2012 (SR)], India, for providing financial support to carry out this work.


  1. 1.
    Samanta Cimitan, Stefania Albonetti, Laura Forni, Francesca Peri, Dario Lazzari, J. Colloid Interface Sci. 329, 73–80 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Vijayaprasath, G. Ravi, A.S. Haja Hameed, T. Mahalingam, J. Phys. Chem. C 118, 9715–9725 (2014)CrossRefGoogle Scholar
  3. 3.
    S.C. Navale, V. Ravi, I.S. Mulla, Sens. Actuators, B 139, 466–470 (2009)CrossRefGoogle Scholar
  4. 4.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 301–303 (2005)CrossRefGoogle Scholar
  5. 5.
    W.J. Kim, S.J. Kim, A.N. Cartwright, P.N. Prasad, Appl. Phys. Lett. 92, 191107 (2008)CrossRefGoogle Scholar
  6. 6.
    H.J. Ahn, H.C. Choi, K.W. Park, S.B. Kim, Y.E. Sung, J. Phys. Chem. B 108, 9815–9820 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Lu, H. Zhang, Y. Ni, Q. Zhang, J. Chen, Biosens. Bioelectron. 24, 93–98 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron. 36, 41–47 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Kaur, J. Shah, R.K. Kotnala, K.C. Verama, Ceram. Int. 38, 5563–5570 (2012)CrossRefGoogle Scholar
  10. 10.
    T.L. Phan, N.X. Nghia, S.C. Yu, Solid State Commun. 152, 2087–2091 (2012)CrossRefGoogle Scholar
  11. 11.
    A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331–335 (2013)CrossRefGoogle Scholar
  12. 12.
    S.M. Reda, Mater. Sci. Semicond. Process. 13, 417–425 (2010)CrossRefGoogle Scholar
  13. 13.
    Z. Hui, Y. Deren, M. Xiangyang, J. Yujie, X. Jin, Q. Duanlin, Nanotechnology 15, 622 (2004)CrossRefGoogle Scholar
  14. 14.
    Z. Xiaowei, Q. Limin, Nanotechnology 23, 235604–235611 (2012)CrossRefGoogle Scholar
  15. 15.
    C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, J. Appl. Phys. 99, 024303 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Kong, Y. Xu, H. Mao, C. Yao, X. Ding, J. Electroanal. Chem. 669, 1–5 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Wang, J.N. Park, X.Y. Wei, C.W. Lee, Chem. Commun. 5, 628–629 (2003)CrossRefGoogle Scholar
  18. 18.
    Y.-Z. Li, Z.-M. Liu, Y.-L. Liu, Y.-H. Yang, G.-L. Shen, Y. Ru-Qin, Anal. Biochem. 349, 33–40 (2006)CrossRefGoogle Scholar
  19. 19.
    V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, J. Magn. Magn. Mater. 324, 683–689 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Appl. Surf. Sci. 313, 870–876 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349–5355 (2011)CrossRefGoogle Scholar
  22. 22.
    B.D. Culity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001)Google Scholar
  23. 23.
    L. Vegard, Z. Phys. 5, 17 (1921)CrossRefGoogle Scholar
  24. 24.
    L. Vegard, Z. Kristallogr. 67, 239 (1928)Google Scholar
  25. 25.
    Y.S. Liu, W.Q. Luo, R.F. Li, G.K. Liu, M.R. Antonio, X.Y. Chen, J. Phys. Chem. C 112, 686–694 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Geetha, T. Thilagavathi, Dig. J. Nanomater. Bios. 5, 297 (2010)Google Scholar
  27. 27.
    Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer, Mater. Res. Bull. 43, 2719–2726 (2008)CrossRefGoogle Scholar
  28. 28.
    S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semi. Process. 11, 6–12 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Kurian, S. Sebastian, J. Mathew, K.C. George, Ind. J. Pure Appl. Phys. 42, 926 (2004)Google Scholar
  30. 30.
    S. Maensiri, P. Laokul, V. Promarak, J. Cryst. Growth 289, 102–106 (2006)CrossRefGoogle Scholar
  31. 31.
    Sumetha Suwanboon, Sci. Asia 34, 31–34 (2008)CrossRefGoogle Scholar
  32. 32.
    P. David Cozzoli, M. Lueia Curri, A. Agostiano, G. Leo, M. Lomasolo, J. Phys. Chem. B 107, 4756 (2007)CrossRefGoogle Scholar
  33. 33.
    Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Proc. Res. 3, 146–149 (2002)Google Scholar
  34. 34.
    Y.K. Lakshmi, K. Srinivas, B. Sridhar, M.M. Raja, M. Vithald, P.V. Reddy, Mater. Chem. Phys. 113, 749–755 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134–140 (2000)CrossRefGoogle Scholar
  36. 36.
    J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524–3531 (1977)CrossRefGoogle Scholar
  37. 37.
    N.S. Sabri, A.K. Yahya, M.K. Talari, J. Lumin. 132, 1735–1739 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Vijayaprasath
    • 1
  • R. Murugan
    • 1
  • J. Shankara Narayanan
    • 2
  • V. Dharuman
    • 2
  • G. Ravi
    • 1
  • Y. Hayakawa
    • 3
  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Department of Bioelectronics and BiosensorsAlagappa UniversityKaraikudiIndia
  3. 3.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan

Personalised recommendations