Skip to main content
Log in

Glucose sensing behavior of cobalt doped ZnO nanoparticles synthesized by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Zn1−xCoxO (x = 0.05, 0.10 and 0.15) nanoparticles were synthesized by co-precipitation method. Powder X-ray diffraction studies confirmed that pure and Co doped ZnO have a single phase nature with hexagonal wurtzite structure and Co2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO matrix. FTIR and EDS spectra results confirmed the incorporation of the dopants into the ZnO lattice structure. FESEM images showed the flower like morphology in ZnO and flowers are dispersed to grains in Co doped ZnO nanoparticles. The chemical composition of Zn0.90Co0.10O nanoparticles were confirmed by XPS. The XPS results clearly showed the existence of Co as a doping element into the ZnO crystalline lattice. Further, the synthesized Co doped ZnO nanoparticles have been used for electrochemical non-enzymatic glucose biosensing. The lowest detection limit of the proposed sensor was found to be 5 µM. The sensor selectively oxidizes glucose in the presence of other interfering compounds like l-dopa, ascorbic acid, hydrogen peroxide and uric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samanta Cimitan, Stefania Albonetti, Laura Forni, Francesca Peri, Dario Lazzari, J. Colloid Interface Sci. 329, 73–80 (2009)

    Article  Google Scholar 

  2. G. Vijayaprasath, G. Ravi, A.S. Haja Hameed, T. Mahalingam, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

  3. S.C. Navale, V. Ravi, I.S. Mulla, Sens. Actuators, B 139, 466–470 (2009)

    Article  Google Scholar 

  4. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 301–303 (2005)

    Article  Google Scholar 

  5. W.J. Kim, S.J. Kim, A.N. Cartwright, P.N. Prasad, Appl. Phys. Lett. 92, 191107 (2008)

    Article  Google Scholar 

  6. H.J. Ahn, H.C. Choi, K.W. Park, S.B. Kim, Y.E. Sung, J. Phys. Chem. B 108, 9815–9820 (2004)

    Article  Google Scholar 

  7. X. Lu, H. Zhang, Y. Ni, Q. Zhang, J. Chen, Biosens. Bioelectron. 24, 93–98 (2008)

    Article  Google Scholar 

  8. N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron. 36, 41–47 (2012)

    Article  Google Scholar 

  9. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verama, Ceram. Int. 38, 5563–5570 (2012)

    Article  Google Scholar 

  10. T.L. Phan, N.X. Nghia, S.C. Yu, Solid State Commun. 152, 2087–2091 (2012)

    Article  Google Scholar 

  11. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331–335 (2013)

    Article  Google Scholar 

  12. S.M. Reda, Mater. Sci. Semicond. Process. 13, 417–425 (2010)

    Article  Google Scholar 

  13. Z. Hui, Y. Deren, M. Xiangyang, J. Yujie, X. Jin, Q. Duanlin, Nanotechnology 15, 622 (2004)

    Article  Google Scholar 

  14. Z. Xiaowei, Q. Limin, Nanotechnology 23, 235604–235611 (2012)

    Article  Google Scholar 

  15. C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, J. Appl. Phys. 99, 024303 (2006)

    Article  Google Scholar 

  16. Y. Kong, Y. Xu, H. Mao, C. Yao, X. Ding, J. Electroanal. Chem. 669, 1–5 (2012)

    Article  Google Scholar 

  17. J. Wang, J.N. Park, X.Y. Wei, C.W. Lee, Chem. Commun. 5, 628–629 (2003)

    Article  Google Scholar 

  18. Y.-Z. Li, Z.-M. Liu, Y.-L. Liu, Y.-H. Yang, G.-L. Shen, Y. Ru-Qin, Anal. Biochem. 349, 33–40 (2006)

    Article  Google Scholar 

  19. V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, J. Magn. Magn. Mater. 324, 683–689 (2012)

    Article  Google Scholar 

  20. G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Appl. Surf. Sci. 313, 870–876 (2014)

    Article  Google Scholar 

  21. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349–5355 (2011)

    Article  Google Scholar 

  22. B.D. Culity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  23. L. Vegard, Z. Phys. 5, 17 (1921)

    Article  Google Scholar 

  24. L. Vegard, Z. Kristallogr. 67, 239 (1928)

    Google Scholar 

  25. Y.S. Liu, W.Q. Luo, R.F. Li, G.K. Liu, M.R. Antonio, X.Y. Chen, J. Phys. Chem. C 112, 686–694 (2008)

    Article  Google Scholar 

  26. D. Geetha, T. Thilagavathi, Dig. J. Nanomater. Bios. 5, 297 (2010)

    Google Scholar 

  27. Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer, Mater. Res. Bull. 43, 2719–2726 (2008)

    Article  Google Scholar 

  28. S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semi. Process. 11, 6–12 (2008)

    Article  Google Scholar 

  29. S. Kurian, S. Sebastian, J. Mathew, K.C. George, Ind. J. Pure Appl. Phys. 42, 926 (2004)

    Google Scholar 

  30. S. Maensiri, P. Laokul, V. Promarak, J. Cryst. Growth 289, 102–106 (2006)

    Article  Google Scholar 

  31. Sumetha Suwanboon, Sci. Asia 34, 31–34 (2008)

    Article  Google Scholar 

  32. P. David Cozzoli, M. Lueia Curri, A. Agostiano, G. Leo, M. Lomasolo, J. Phys. Chem. B 107, 4756 (2007)

    Article  Google Scholar 

  33. Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Proc. Res. 3, 146–149 (2002)

    Google Scholar 

  34. Y.K. Lakshmi, K. Srinivas, B. Sridhar, M.M. Raja, M. Vithald, P.V. Reddy, Mater. Chem. Phys. 113, 749–755 (2009)

    Article  Google Scholar 

  35. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134–140 (2000)

    Article  Google Scholar 

  36. J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524–3531 (1977)

    Article  Google Scholar 

  37. N.S. Sabri, A.K. Yahya, M.K. Talari, J. Lumin. 132, 1735–1739 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors G. Ravi and G. Vijayaprasath have gratefully acknowledged the UGC [Ref. No. F. 41-933/2012 (SR)], India, for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaprasath, G., Murugan, R., Shankara Narayanan, J. et al. Glucose sensing behavior of cobalt doped ZnO nanoparticles synthesized by co-precipitation method. J Mater Sci: Mater Electron 26, 4988–4996 (2015). https://doi.org/10.1007/s10854-015-3011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3011-6

Keywords

Navigation