Charge carrier transport through 3D assemblies of zincblende CdSe and ZnSe quantum dots in weak size-quantization regime

  • Biljana Pejova
  • Irina Bineva


The mechanism of charge carrier transport through 3D assemblies of ZnSe and CdSe quantum dots with zincblende structure in weak size-quantization regime was investigated. The Debye length in the case of ZnSe QDs was found to be 11.5 nm, i.e. almost three times larger than the average diameter of the nanocrystals constituting the films annealed at 250 °C. In CdSe QDs, on the other hand, the Debye’s length of 11.8 nm was almost twice smaller than the average crystal diameter in the films annealed at 300 °C. In the case of ZnSe QD assemblies, it was found that the predominant mechanism governing the charge carrier transport in temperature range from 380 to 650 K is the thermionic emission, with the trap levels taking part in the formation of crystal boundary barrier being located above the Fermi level. Combining temperature-dependent conductivity data with the data from optical absorption studies, the actual position of the trap level was estimated to be at about 0.37 eV (referred to the intrinsic Fermi level at the interface). In contrast to the case of ZnSe, the temperature dependence of conductivity in the case of thin films composed by 3D assemblies of CdSe QDs appeared to be much more complex. In the highest temperature region in which the temperature-dependent conductivity measurements were performed for this system (from 480 to 540 K), it was found that the thermally activated band-to-band electronic transitions govern the conductivity changes, the corresponding thermal band gap energy being 1.85 eV. In the lower-temperature region, down to 300 K, the thermionic emission was found to be predominant charge carrier transport mechanism, with trap levels being positioned above the Fermi level. The two detected trap levels were found to be located at 0.46 and 0.79 eV, corresponding to the measured conductivity activation energies of 0.84 and 0.51 eV.


ZnSe Trap Level Charge Carrier Transport Conductivity Activation Energy ZnSe Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been supported under the bilateral agreement between the Bulgarian Academy of Sciences and Macedonian Academy of Sciences and Arts, Project “Investigation of the surface morphology of nanostructured thin films by scanning probe microscopy”.


  1. 1.
    J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)CrossRefGoogle Scholar
  2. 2.
    P.C. Mathur, A.K. Shukla, R.P. Sharma, P.K. Goyal, J. Electron. Mater. 12, 483 (1983)CrossRefGoogle Scholar
  3. 3.
    T.H. Myers, S.W. Edwards, J.F. Schetzina, J. Appl. Phys. 52, 4231 (1981)CrossRefGoogle Scholar
  4. 4.
    R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRefGoogle Scholar
  5. 5.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)CrossRefGoogle Scholar
  7. 7.
    C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)CrossRefGoogle Scholar
  8. 8.
    C.R. Kagan, C.B. Murray, M.G. Bawendi, Phys. Rev. B 54, 8633 (1996)CrossRefGoogle Scholar
  9. 9.
    F. Gindele, R. Westphäling, U. Woggon, L. Spanhel, V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997)CrossRefGoogle Scholar
  10. 10.
    M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, U. Woggon, Phys. Rev. B 60, 1504 (1999)CrossRefGoogle Scholar
  11. 11.
    M.V. Artemyev, U. Woggon, H. Jaschinski, L.I. Gurinovich, S.V. Gaponenko, J. Phys. Chem. B 104, 11617 (2000)CrossRefGoogle Scholar
  12. 12.
    M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Status Solidi B 224, 393 (2001)CrossRefGoogle Scholar
  13. 13.
    B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001)CrossRefGoogle Scholar
  14. 14.
    D.E. Kim, M.A. Islam, L. Avila, I.P. Herman, J. Phys. Chem. B 107, 6318 (2003)CrossRefGoogle Scholar
  15. 15.
    U. Landman, W.D. Luedtke, Faraday Discuss. 124, 1 (2004)CrossRefGoogle Scholar
  16. 16.
    A.D. Yoffe, Adv. Phys. 51, 799 (2002)CrossRefGoogle Scholar
  17. 17.
    C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  18. 18.
    K. Seeger, Semiconductor Physics (Springer, New York, 1997)CrossRefGoogle Scholar
  19. 19.
    R. Dalven, Introduction to Applied Solid State Physics (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  20. 20.
    S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 1985)Google Scholar
  21. 21.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  22. 22.
    R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)CrossRefGoogle Scholar
  23. 23.
    G. Baccarani, B. Riccò, G. Spadini, J. Appl. Phys. 49, 5565 (1978)CrossRefGoogle Scholar
  24. 24.
    D.S. Ginger, N.C. Greenham, J. Appl. Phys. 87, 1361 (2000)CrossRefGoogle Scholar
  25. 25.
    J.W. Orton, B.J. Goldsmith, M.J. Powell, J.A. Chapman, Appl. Phys. Lett. 37, 557 (1980)CrossRefGoogle Scholar
  26. 26.
    N.F. Mott, J. Non-cryst. Solids 8–10, 1 (1972)CrossRefGoogle Scholar
  27. 27.
    J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, J. Appl. Phys. 53, 1602 (1982)CrossRefGoogle Scholar
  28. 28.
    C.-L. Shieh, S. Wagner, L.L. Kazmerski, Mater. Lett. 3, 415 (1985)CrossRefGoogle Scholar
  29. 29.
    L.L. Kazmerski, J. Vac. Sci. Technol. 20, 423 (1982)CrossRefGoogle Scholar
  30. 30.
    L.L. Kazmerski, Y.J. Juang, J. Vac. Sci. Technol. 14, 769 (1977)CrossRefGoogle Scholar
  31. 31.
    L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, J. Appl. Phys. 46, 4865 (1975)CrossRefGoogle Scholar
  32. 32.
    L.L. Kazmerski, M.S. Ayyagari, F.R. White, G.A. Sanborn, J. Vac. Sci. Technol. 13, 139 (1976)CrossRefGoogle Scholar
  33. 33.
    L.L. Kazmerski, C.C. Shieh, Thin Solid Films 41, 35 (1977)CrossRefGoogle Scholar
  34. 34.
    L.L. Kazmerski, D.M. Racine, Thin Solid Films 30, L19 (1975)CrossRefGoogle Scholar
  35. 35.
    L.L. Kazmerski, W.B. Berry, C.W. Allen, J. Appl. Phys. 43, 3515 (1972)CrossRefGoogle Scholar
  36. 36.
    L.L. Kazmerski, W.B. Berry, C.W. Allen, J. Appl. Phys. 43, 3521 (1972)CrossRefGoogle Scholar
  37. 37.
    M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRefGoogle Scholar
  38. 38.
    I. Balberg, J. Appl. Phys. 110, 061301 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Manheller, S. Karthäuser, R. Waser, K. Blech, U. Simon, J. Phys. Chem. C 116, 20657 (2012)CrossRefGoogle Scholar
  40. 40.
    V.P. Kunets, M.R.S. Dias, T. Rembert, M.E. Ware, YuI Mazur, V. Lopez-Richard, H.A. Mantooth, G.E. Marques, G.J. Salamo, J. Appl. Phys. 113, 183709 (2013)CrossRefGoogle Scholar
  41. 41.
    H. Lepage, A. Kaminski-Cachopo, A. Poncet, G. le Carval, J. Phys. Chem. C 116, 10873 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Pejova, I. Bineva, J. Phys. Chem. C 117, 7303 (2013)CrossRefGoogle Scholar
  43. 43.
    B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chem. Mater. 20, 2551 (2008)CrossRefGoogle Scholar
  44. 44.
    B. Pejova, A. Tanuševski, J. Phys. Chem. C 112, 3525 (2008)CrossRefGoogle Scholar
  45. 45.
    B. Pejova, B. Abay, J. Phys. Chem. C 115, 23241 (2011)CrossRefGoogle Scholar
  46. 46.
    B. Pejova, D. Nesheva, Z. Aneva, A. Petrova, J. Phys. Chem. C 115, 37 (2011)CrossRefGoogle Scholar
  47. 47.
    B. Pejova, J. Phys. Chem. C 117, 19689 (2013)CrossRefGoogle Scholar
  48. 48.
    B. Pejova, J. Solid State Chem. 207, 147 (2013)CrossRefGoogle Scholar
  49. 49.
    B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 172, 381 (2003)CrossRefGoogle Scholar
  50. 50.
    B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 174, 276 (2003)CrossRefGoogle Scholar
  51. 51.
    B. Pejova, I. Grozdanov, Mater. Lett. 58, 666 (2004)CrossRefGoogle Scholar
  52. 52.
    B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 177, 4785 (2004)CrossRefGoogle Scholar
  53. 53.
    B. Pejova, Mater. Chem. Phys. 119, 367 (2010)CrossRefGoogle Scholar
  54. 54.
    B. Pejova, B. Abay, I. Bineva, J. Phys. Chem. C 114, 15280 (2010)CrossRefGoogle Scholar
  55. 55.
    B. Pejova, I. Grozdanov, Mater. Chem. Phys. 90, 35 (2005)CrossRefGoogle Scholar
  56. 56.
    H. Hofmeister, D. Nesheva, Z. Levi, S. Hopfe, S. Matthias, in Proceedings of EUREM 12, Brno, Czechoslovak Society for Electron Microscopy, Brno, 2009, ed. by C. L. Frank, F. Ciampor, p. 365Google Scholar
  57. 57.
    A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2005)Google Scholar
  58. 58.
    Handbook of Chemistry and Physics, 64th edn. (CRC Press, 1983–1984)Google Scholar
  59. 59.
    S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)CrossRefGoogle Scholar
  60. 60.
    M.T. Weller, Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997)Google Scholar
  61. 61.
    P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006)Google Scholar
  62. 62.
    C.F. Klingshirin, Semiconductor Optics (Springer, Berlin, 1997)Google Scholar
  63. 63.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)CrossRefGoogle Scholar
  64. 64.
    M.A. Lampert, Injection Currents in Solids (Academic Press, New York, 1965)Google Scholar
  65. 65.
    M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)CrossRefGoogle Scholar
  66. 66.
    A. B. Novoselova (ed.), Physical and Chemical Properties of Semiconductors—Handbook (Moscow, 1978)Google Scholar
  67. 67.
    P. Gupta, S. Chaudhuri, A.K. Pal, J. Phys. D Appl. Phys. 26, 1709 (1993)CrossRefGoogle Scholar
  68. 68.
    I. Günal, M. Parlak, J. Mater. Sci. Mater. Electron. 8, 9 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Chemistry, Faculty of Natural Sciences and MathematicsSts. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Research Center for Environment and MaterialsMacedonian Academy of Sciences and ArtsSkopjeMacedonia
  3. 3.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations