Structural and optical properties of ZnO thin films deposited by sol–gel method: effect of stabilizer concentration

  • Deep Shikha
  • Vimal Mehta
  • S. C. Sood
  • Jeewan Sharma


Nanocrystalline thin films of ZnO were successfully deposited on Si substrate via sol–gel method using zinc acetate dehydrate as a precursor and 2-methoxy ethanol as a solvent. The effect of stabilizer concentration on the structural and optical properties of the ZnO thin film was investigated as the stabilizer concentration affects the growth orientation of ZnO thin films prepared by sol–gel method. The growth in (002) plane of hexagonal structure is preferred in many applications as the 2-dimensional Zn atoms population is highest in this orientation. The growth of (002)-oriented ZnO films was optimized with the concentration of the stabilizer (triethanolamine). The crystal structures of the samples were analyzed using X-ray diffractometer confirming the polycrystalline nature and hexagonal structure of films. In order to estimate the preferential crystallite orientation quantitatively, the texture coefficient (Tc) was calculated. The particle size and strain was also found to change with concentration of stabilizer. SEM results confirm the formation of nanocrystalline thin films with homogeneous morphology. Photoluminescence characteristics show a direct band gap transition which shifts towards lower wavelength with increase in stabilizer concentration. It was observed that the stabilizer concentration is the most important factor to grow a highly (002)-oriented ZnO film along c-axis.


Green Emission Visible Emission Stabilizer Concentration Texture Coefficient Nanocrystalline Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Director, Ambala College of Engineering for the experimental facility provided for the completion of the work.


  1. 1.
    L. Vayssieres, Adv. Mater. 15, 464 (2003)CrossRefGoogle Scholar
  2. 2.
    Z. Alaie, S.Md. Nejad, Md.H. Yousefi, J. Mater. Sci.: Mater. Electron. 25, 852 (2014)Google Scholar
  3. 3.
    C.Y. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, R. Mu, J. Mater. Sci.: Mater. Electron. 20, 197 (2009)Google Scholar
  4. 4.
    T. Minami, H. Nato, S. Takata, Thin Solid Films 124, 43 (1985)CrossRefGoogle Scholar
  5. 5.
    M. Safonova, P.K. Nair, E. Mellikov, A.R. Garcia, K. Kerm, N. Revathi, T. Romann, V. Mikli, O. Volobujeva, J. Mater. Sci.: Mater. Electron. 25, 3160 (2014)Google Scholar
  6. 6.
    K.R. Murali, J. Mater. Sci.: Mater. Electron. 25, 2374 (2014)Google Scholar
  7. 7.
    A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)CrossRefGoogle Scholar
  8. 8.
    P. Nunes, E. Fortunadeo, R. Martins, Thin Solid Films 383, 277 (2001)CrossRefGoogle Scholar
  9. 9.
    Y.F. Lu, H.Q. Ni, Z.H. Mai, Z.M. Ren, J. Appl. Phys. 88, 498 (2000)CrossRefGoogle Scholar
  10. 10.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)CrossRefGoogle Scholar
  11. 11.
    B.K. Choi, D.H. Chang, Y.S. Yoon, S.J. Kang, J. Mater. Sci.: Mater. Electron. 17, 1011 (2006)Google Scholar
  12. 12.
    O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, B. Rech, Thin Solid Films 442, 80 (2003)CrossRefGoogle Scholar
  13. 13.
    S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuators, B 107, 379 (2005)CrossRefGoogle Scholar
  14. 14.
    N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14, 418 (2002)CrossRefGoogle Scholar
  15. 15.
    H.E. Brown, Zinc Oxide: Properties and Applications (Int. Lead Zinc Research Org, New York, 1976), p. 1Google Scholar
  16. 16.
    S. Ilican, Y. Caglar, M. Caglar, J. Opt. Adv. Mater. 10, 2578 (2008)Google Scholar
  17. 17.
    J.-F. Yan, L.-L. Zhao, Z.-Y. Zhang, Chin. Phys. Lett. 25, 2253 (2008)CrossRefGoogle Scholar
  18. 18.
    H.F. MCMurdie et al., Standard X-Ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1, 76 (1986)CrossRefGoogle Scholar
  19. 19.
    G.G. Valle, P. Hammer, S.H. Pulcinelli, C.V. Santilli, J. Eur. Ceramic Soc. 24, 1009 (1986)CrossRefGoogle Scholar
  20. 20.
    J. Sharma, S.K. Tripathi, Phys. B 406, 1757 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Sharma, S.K. Tripathi, Dig. J. Nanomater. Biostruct. 6(3), 1179 (2011)Google Scholar
  22. 22.
    K. Farmer, P. Hari, K. Roberts, Can. J. Phys. 92, 838 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Mittal, M. Sharma and O.P. Pandey, J. Nanosci. Nanotechnol. 14, 2725 (2014)CrossRefGoogle Scholar
  24. 24.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opto-Electron. Rev. 18, 467 (2010)CrossRefGoogle Scholar
  25. 25.
    C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.O. Xin, Nanotechnology 14, 667 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao, C.H. Yan, Chem. Mater. 14, 4172 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Deep Shikha
    • 1
    • 2
  • Vimal Mehta
    • 1
  • S. C. Sood
    • 2
  • Jeewan Sharma
    • 3
  1. 1.Department of PhysicsMaharishi Markandeshwar University, MullanaAmbalaIndia
  2. 2.Ambala College of Engineering and Applied ResearchMithapurIndia
  3. 3.Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia

Personalised recommendations