Phase, microstructure and microwave dielectric properties of Ca1−x La x Ti1−x/4O3 (x = 0–1) ceramics

  • Raz Muhammad
  • Yaseen Iqbal


La-doped CaTiO3 compounds with general formula Ca1−x La x Ti1−x/4O3 (x = 0–1) were prepared via a mixed oxide solid state sintering route. X-ray diffraction analysis revealed the formation of single phase compounds with orthorhombic (Pbnm) symmetry for x ≤ 0.25. At x ≥ 0.5, A n B n−1O3n type B-site deficient hexagonal perovskite phases formed along with minor secondary phases. The grain size and morphology and hence, the microwave dielectric properties varied substantially with change in dopant concentration (x). The optimum microwave dielectric properties (εr = 45.3, Q × f o = 20506 GHz and τf = −14.8 ppm/°C) were achieved at x = 0.75.


Microwave Dielectric Property Dielectric Resonator Increase Sinter Temperature Optimum Sinter Temperature Electron Scanning Electron Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of the Higher Education Commission of Pakistan under the IRSIP program and Prof. I. M. Reaney electro-ceramics group for facilitating the authors at the Electro-ceramics laboratory, Department of Material Science and Engineering, University of Sheffield (UK). The financial support extended to Materials Research Laboratory by the Khyber Pakhtunkhwa Government through the Directorate of S&T, Peshawar is highly acknowledged.


  1. 1.
    R. Muhammad, Y. Iqbal, C. Rambo, H. Khan, Int. J. Mater. Res. 105, 431–439 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Iqbal, R. Muhammad, J. Electron. Mater. 42, 452–457 (2013)CrossRefGoogle Scholar
  3. 3.
    R. Muhammad, Y. Iqbal, J. Mater. Sci. Mater. Electron. 24, 2322–2326 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Muhammad, Y. Iqbal, C. Rambo, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-014-2630-7
  5. 5.
    P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723–1726 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Saleem, Y. Iqbal, S. Qin, X. Wu, R. Muhammad, F. Zhu, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-014-2568-9
  7. 7.
    H. Liu, H. Yu, Z. Tian, Z. Meng, Z. Wu, S. Ouyang, J. Am. Ceram. Soc. 88, 453–455 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Feteira, D.C. Sinclair, M.T. Lanagan, J. Mater. Res. 20, 2391–2399 (2005)CrossRefGoogle Scholar
  9. 9.
    I. Levin, J. Chan, J. Maslar, T. Vanderah, S. Bell, J. Appl. Phys. 90, 904–914 (2001)CrossRefGoogle Scholar
  10. 10.
    B. Jančar, D. Suvorov, M. Valant, J. Mater. Sci. Lett. 20, 71–72 (2001)CrossRefGoogle Scholar
  11. 11.
    C.-L. Huang, J.-T. Tsai, Y.-B. Chen, Mater. Res. Bull. 36, 547–556 (2001)CrossRefGoogle Scholar
  12. 12.
    C. Li, X. Wei, H. Yan, M.J. Reece, H. Ye, J. Mater. Sci. Mater. Electron. 24, 1947–1954 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Li, W. Wu, F. Liu, Y. Li, P. Si, H. Ge, Mater. Lett. 118, 24–26 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Muhammad, Y. Iqbal, C. Rambo, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-014-2662-z
  15. 15.
    R.D. Shannon, Acta Crystallographica Sec. A 32, 751–767 (1976)CrossRefGoogle Scholar
  16. 16.
    R. Muhammad, Y. Iqbal, C.R. Rambo, J. Mater. Sci. Mater. Electron. 25, 1652–1656 (2014)CrossRefGoogle Scholar
  17. 17.
    R.D. Shannon, J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  18. 18.
    H. Ohsato, I. Kagomiya, K.-W. Chae, J. Korean Phys. Soc. 61, 971–979 (2012)CrossRefGoogle Scholar
  19. 19.
    I.N. Jawahar, N.I. Santha, M.T. Sebastian, P. Mohanan, J. Mater. Res. 17, 3084–3089 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsUniversity of PeshawarPeshawarPakistan

Personalised recommendations