Advertisement

Microstructural, crystallographic and optical characterizations of Cu-doped ZnO nanoparticles co-doped with Ni

  • S. Anandan
  • S. Muthukumaran
Article

Abstract

In the present study Ni, Cu co-doped ZnO nanoparticles have been successfully synthesized by sol–gel method. Hexagonal wurzite structure of Cu-doped ZnO was not affected by Ni-doping. Cubic NiO phase was detected at high Ni content (Ni = 6 wt%). The enhanced crystallite size at lower Ni content is due to the existence of surface Ni ions and the presence of more defects on the grain surface reduced the crystallite size. The change in lattice parameters and ‘d’ value was discussed based on the micro-strain, volume of the unit cell and the secondary phases. The green band absorption between 493 and 484 nm confirmed the presence of oxygen related defects and intrinsic defects. The red shift of energy gap (ΔEg ≈ 0.12 eV) below Ni = 2wt% is due sp–d spin-exchange interactions between the band electrons and the localized d electrons of transition- metal ion but after Ni = 2wt%, energy gap was increased by the secondary phases like NiO. The shift of vibration frequencies towards higher frequency side revealed the incorporation of Ni in the octahedral and tetrahedral sites existing in hexagonal-wurtzite structure.

Keywords

Dope Sample High Frequency Side Oxygen Related Defect Copper Acetate Monohydrate Visible Optical Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are thankful to the University Grant Commission, Hyderabad, for financial support under the project (File No.: MRP- 4317/12 (MRP/UGC-SERO)).

References

  1. 1.
    H. Ohno, Science 281, 951 (1998)CrossRefGoogle Scholar
  2. 2.
    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 1, 96 (2003)Google Scholar
  3. 3.
    I. Malajovich, J.J. Berry, N. Samarth, D.D. Awshalom, Nature 411, 770 (2001)CrossRefGoogle Scholar
  4. 4.
    D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Nature 430, 190 (2004)CrossRefGoogle Scholar
  5. 5.
    M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci.: Mater. Electron. 24, 1069 (2013)Google Scholar
  7. 7.
    S. Muthukumaran, R. Gopalakrishnan, Optical Mater. 34, 1946 (2012)CrossRefGoogle Scholar
  8. 8.
    Z.B. Bahsi, A.Y. Oral, Opt. Mater. 29, 672 (2007)CrossRefGoogle Scholar
  9. 9.
    K.S. Ahn, T. Deutsch, Y. Yan, C.S. Jiang, C.L. Perkins, J. Turner, M. Al-Jassim, J. Appl. Phys. 102, 6 (2007)Google Scholar
  10. 10.
    Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyar, Mater. Res. Bull. 43, 2719 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys. B 404, 2486 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Xu, Q. Zhao, H. Yang, Y. Chen, J. Nanopart. Res. 11, 615 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Muthukumaran, R. Gopalakrishnan, Phys. B 407, 3448 (2012)CrossRefGoogle Scholar
  15. 15.
    K.C. Sebastian, M. Chawda, L. Jonny, D. Bodas, Mater. Lett. 64, 2269 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang, Y. Zhang, H. Liu, Y. Liu, J. Yang, Y. Yan, J. Alloys Compd. 604, 281 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Kö seoğlua, Y. C. Durmaza, R. Yilgin, Ceramics Inter. 40, 10685 (2014)Google Scholar
  18. 18.
    K. Raja, P.S. Ramesh, D. Geetha, Spectrochimica Acta A 120, 19 (2014)CrossRefGoogle Scholar
  19. 19.
    G. Tang, X. Shi, C. Huo, Z. Wang, Ceramics Inter. 39, 4825 (2013)CrossRefGoogle Scholar
  20. 20.
    J.A. Wibowo, N.F. Djaja, R. Saleh, Adv. Mater. Phys. Chem. 3, 48 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Shim, T. Hwang, J. Park, S.J. Han, Y. Jeong, Appl. Phys. Lett. 86, 082503 (2005)CrossRefGoogle Scholar
  22. 22.
    H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Mater. Chem. Phys. 125, 656 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Guangqing, X. Changtai, C. Shixun, Z. Jungang, W. Feng, X. Jun, J. Magn. Magn. Mater. 302, 340 (2006)CrossRefGoogle Scholar
  24. 24.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 3457 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Ashokkumar, S. Muthukumaran, Opt. Mater. 37, 671 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Elilarassi, G. Chandrasekaran, Mater. Chem. Phys. 123, 450 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Sivaselvan, S. Muthukumaran, M. Ashokkumar, Opt. Mater. 36, 797 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol-Gel. Sci. Technol. 43, 171 (2007)CrossRefGoogle Scholar
  29. 29.
    G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, J. Xu, J. Magn. Magn. Mater. 302, 340 (2006)CrossRefGoogle Scholar
  30. 30.
    H. Colak, O. Turkoglu, J. Mater. Sci. Technol. 27, 944 (2011)CrossRefGoogle Scholar
  31. 31.
    M.H. Huang, Y.Y. Wu, H.N. Feich, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar
  32. 32.
    C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19 (2006)CrossRefGoogle Scholar
  33. 33.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)CrossRefGoogle Scholar
  34. 34.
    S. Anandan, S. Muthukumaran, M. Ashokkumar, Superlattices Microstruct. 74, 247 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semicond. Process. 11, 6 (2008)CrossRefGoogle Scholar
  36. 36.
    X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Phys. B 406, 3956 (2011)CrossRefGoogle Scholar
  37. 37.
    T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999)CrossRefGoogle Scholar
  38. 38.
    K.T. Kim, G.H. Kim, J.C. Woo, C.I. Kim, Surf. Coat. Technol. 202, 5650 (2008)CrossRefGoogle Scholar
  39. 39.
    A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011)CrossRefGoogle Scholar
  40. 40.
    M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378 (2011)CrossRefGoogle Scholar
  41. 41.
    P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, M. Lomascolo, J. Phys. Chem. B 107, 4756 (2003)CrossRefGoogle Scholar
  42. 42.
    C.J. Conga, J.H. Honga, K.L. Zhanga, Mater. Chem. Phys. 113, 435 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Government Arts CollegeThiruvarurIndia
  3. 3.PG and Research Department of PhysicsGovernment Arts and Science CollegeMelur, MaduraiIndia

Personalised recommendations