Microstructure and properties of Al/Sip composites for thermal management applications

  • Zhiyong Cai
  • Richu WangEmail author
  • Chun Zhang
  • Chaoqun Peng
  • Linqian Wang


Aluminum matrix composite reinforced with high amount of Si particle is an advanced electronic packaging material used in thermal management. In this work, Al/Sip composites with different Si contents were prepared by rapid solidification and hot pressing. Fine and homogeneous microstructures with defect-free were achieved, and no detrimental reaction was detected. The typical thermo-physical properties such as the thermal conductivity and coefficient of thermal expansion (CTE) of the Al/Sip composites were acceptable as electronic packaging material for semiconductor devices. The CTE increased gradually with the temperature. Additionally, the mechanical properties of the composites were measured. The technological performance (workability, platability, and laser weldability) of the composites were also evaluated.


Laser Welding Rapid Solidification Brinell Hardness Aluminum Matrix Composite Electronic Packaging Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank for the financial support from the National Key Fundamental Research Project of China (JPPT-125-14).


  1. 1.
    J.H. Yu, C.B. Wang, Q. Shen, L.M. Zhang, Mater. Des. 41, 198–202 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Zweben, JOM 50, 47–51 (1998)CrossRefGoogle Scholar
  3. 3.
    S.C. Hogg, A. Lambourne, A. Ogilvy, P.S. Grant, Scr. Mater. 55, 111–114 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Schöbel, W. Altendorfer, H.P. Degischer, S. Vaucher, T. Buslaps, M.D. Michiel, M. Hofmann, Compos. Sci. Technol. 71, 724–733 (2011)CrossRefGoogle Scholar
  5. 5.
    X.H. Qu, L. Zhang, M. Wu, S.B. Ren, Prog. Nat. Sci. Mater. Int. 21, 189–197 (2011)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, G. Wu, L. Jiang, G. Chen, Mater. Chem. Phys. 82, 780–785 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Kida, L. Weber, C. Monachon, A. Mortensen, J. Appl. Phys. 109, 1–8 (2011)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, L. Jiang, G. Wu, J. Mater. Sci.: Mater. Electron. 25, 604–608 (2014)Google Scholar
  9. 9.
    Y. Jia, F. Cao, S. Scudino, P. Ma, H. Li, L. Yu, J. Eckert, J. Sun, Mater. Des. 57, 585–591 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, T. Zuo, J. Mater. Sci. Technol. 30, 417–422 (2014)CrossRefGoogle Scholar
  11. 11.
    T.S. Srivatsan, T.S. Sudarshan, E.J. Lavernia, Prog. Mater. Sci. 39, 317–409 (1995)CrossRefGoogle Scholar
  12. 12.
    P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, J.M. Rodriguez-ibabe, Acta Mater. 44, 1717–1727 (1996)CrossRefGoogle Scholar
  13. 13.
    T.A. Hahn, R.W. Armstrong, Int. J. Thermophys. 9, 179–193 (1988)CrossRefGoogle Scholar
  14. 14.
    S. Ren, X. He, X. Qu, I.S. Humail, Y. Li, Mater. Sci. Eng. B 138, 263–270 (2007)CrossRefGoogle Scholar
  15. 15.
    C.R. Berry, J. Appl. Phys. 24, 658–659 (1953)CrossRefGoogle Scholar
  16. 16.
    G. Mi, C. Li, K. Wang, L. Chen, Mater. Res. Innovations 17, 182–185 (2013)CrossRefGoogle Scholar
  17. 17.
    S.H. Lee, S.Y. Kwon, H.J. Ham, Thermochim. Acta 542, 2–5 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Li, J. Liu, W. Wang, G. Liu, Trans. Nonferrous Met. Soc. China 23, 970–976 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Wang, G. Wu, R. Wang, Z. Xiu, K. Yu, Trans. Nonferrous Met. Soc. China 17, 1039–1042 (2007)Google Scholar
  20. 20.
    Sandvik Osprey Ltd, (2014).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhiyong Cai
    • 1
  • Richu Wang
    • 1
    Email author
  • Chun Zhang
    • 1
  • Chaoqun Peng
    • 1
  • Linqian Wang
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations