Development of Ba0.95Sr0.05(Fe0.5Nb0.5)O3/poly(vinylidene fluoride) nanocomposites for energy storage



To obtain high energy density with low dielectric loss, we synthesized polymer/ceramic composite by incorporating the giant dielectric constant material [Ba0.95Sr0.05(Fe0.5Nb0.5)O3] in a poly(vinylidene fluoride) (PVDF) polymer matrix. X-ray diffraction analysis confirmed the single phase monoclinic structure in all the composite samples. Microstructural analysis indicates that the Ba0.95Sr0.05(Fe0.5Nb0.5)O3 ceramics are evenly distributed in the PVDF matrix in all the composition. The high dielectric constant (~4045) with low dielectric loss (~0.06) was obtained for 10 wt% PVDF content in composite at room temperature. We found high energy density (3.02 J/cm3) for 10 wt% PVDF content in composite at room temperature. These results may be exploited in the development of high energy density capacitors. A significant variation of dielectric constant with magnetic field was noticed, which was not reported previously.


Dielectric Constant PVDF Dielectric Loss Composite Film High Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors Piyush Kumar Patel would like to acknowledge MHRD for providing fellowship. We thank Council of Scientific and Industrial Research, New Delhi, India, for financial support under the Project Grant Number 03 (1172)/13/EMR II dated 12-04-2013.


  1. 1.
    S. Ramesh, B.A. Shutzberg, C. Huang, J. Gao, E.P. Giannelis, IEEE Trans. Adv. Packag. 26, 17 (2003)CrossRefGoogle Scholar
  2. 2.
    D.H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, B.Y. Lin, J. Eur. Ceram. Soc. 21, 1171 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Maliakal, H. Katz, P. Cotts, S. Subramoney, P.J. Mirau, Am. Chem. Soc. 127, 14655 (2005)CrossRefGoogle Scholar
  4. 4.
    C. Huang, Q.M. Zhang, Adv. Mater. 17, 1153 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Zhang, N. Zhang, C. Huang, K. Ren, Q. Zhang, Adv. Mater. 17, 1897 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Arbatti, X.B. Shan, Z.Y. Cheng, Adv. Mater. 19, 1369 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Pelaiz-Barranco, R. Lopez-Noda, J. Appl. Phys. 102, 114102 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Pelaiz-Barranco, P. Marin-Franch, J. Appl. Phys. 97, 034104 (2005)CrossRefGoogle Scholar
  9. 9.
    D. Bhadra, A. Biswas, S. Sarkar, B.K. Chaudhuri, K.F. Tseng, J. Appl. Phys. 107, 124115 (2010)CrossRefGoogle Scholar
  10. 10.
    C.Y. Chung, Y.S. Chang, G.J. Chen, C.C. Chung, T.W. Huang, Solid State Commun. 145, 212 (2008)CrossRefGoogle Scholar
  11. 11.
    C.Y. Chung, Y.H. Chang, G.J. Chen, J. Appl. Phys. 96, 6624 (2004)CrossRefGoogle Scholar
  12. 12.
    K.F. Liao, Y.S. Chang, Y.L. Chai, Y.Y. Tsai, H.L. Chen, Mater. Sci. Eng. B 172, 300 (2010)CrossRefGoogle Scholar
  13. 13.
    U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Ke, H. Huang, J. Appl. Phys. 108, 064104 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Eitssayeam, U. Intatha, K. Pengpat, T. Tunkasiri, Curr. Appl. Phys. 6, 316 (2006)CrossRefGoogle Scholar
  16. 16.
    U. Intatha, S. Eitssayeam, K.J.D. Mackenzie, K. Pengpat, T. Tunkasiri, Mater. Lett. 61, 196 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Saha, T.P. Sinha, J. Phys. Condens. Matter 14, 249 (2002)CrossRefGoogle Scholar
  18. 18.
    N. Charoenthai, R. Traiphol, G. Rujijanagul, Mater. Lett. 62, 4446 (2008)CrossRefGoogle Scholar
  19. 19.
    N. Tawichai, W. Sittiyot, S. Eitssayeam, K. Pengpat, T. Tunkasiri, G. Rujijanagul, Ceram. Int. 38, 121 (2012)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007)CrossRefGoogle Scholar
  21. 21.
    C.Y. Chung, Y.H. Chang, G.J. Chen, Y.L. Chai, J. Cryst. Growth 284, 100 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Eitssayeam, P. Meepranjik, U. Inthata, T. Tunkasiri, Ferroelectrics 415, 164 (2011)CrossRefGoogle Scholar
  23. 23.
    N.K. Singh, P. Kumar, C. Prakash, Adv. Mater. Lett. 3, 181 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, R. Von Der Muhll, L. Bih, J. Alloys Compd. 427, 260 (2007)CrossRefGoogle Scholar
  25. 25.
    Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, A. Simon, M. Maglione, Phys. Status Solidi A 205, 2948 (2008)CrossRefGoogle Scholar
  26. 26.
    Z. Abdelkafi, N. Abdelmoula, O. Bidault, H. Khemakhem, M. Maglione, Phys. B 406, 3470 (2011)CrossRefGoogle Scholar
  27. 27.
    P.K. Patel, K.L. Yadav, Sci. Adv. Mater. 5, 891 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Maglione, J. Phys. Condens. Matter 32, 322202 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Bhagat, K. Prasad, Phys. Status Solidi A 207, 1232 (2010)CrossRefGoogle Scholar
  31. 31.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)CrossRefGoogle Scholar
  32. 32.
    Y. Guo, Y. Liu, J. Wang, R.L. Withers, H. Chen, L. Jin, P. Smith, J. Phys. Chem. 114, 13861 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Mishra, P. Kumar, Compos. Sci. Technol. 88, 26 (2013)CrossRefGoogle Scholar
  34. 34.
    C.V. Chanmal, J.P. Jog, Express Polym. Lett. 2, 294 (2008)CrossRefGoogle Scholar
  35. 35.
    Z.M. Dang, S.H. Yao, J.K. Yuan, J. Bai, J. Phys. Chem. C 114, 13204 (2010)CrossRefGoogle Scholar
  36. 36.
    Z.M. Dang, H.P. Xu, H.Y. Wang, Appl. Phys. Lett. 90, 012901 (2007)CrossRefGoogle Scholar
  37. 37.
    Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, C.W. Nan, Appl. Phys. Lett. 101, 152904 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Yu, Y. Niu, Y. Bai, Y. Zhou, H. Wang, Appl. Phys. Lett. 102, 102903 (2013)CrossRefGoogle Scholar
  39. 39.
    F. Wanga, Y. Wangb, Z. Ren, Adv. Mater. Res. 816, 276 (2013)Google Scholar
  40. 40.
    L. Zhang, Z.Y. Cheng, J. Adv. Dielectr. 1, 389 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Siddabattuni, T.P. Schuman, F. Dogan, Appl. Mater. Interfaces 5, 1917 (2013)CrossRefGoogle Scholar
  42. 42.
    V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19, 9838 (2012)CrossRefGoogle Scholar
  43. 43.
    M. Mendoza, MdAR Khan, MdAI Shuvo, A. Guerrero, Y. Lin, ISRN Nanomater. 8, 151748 (2012)Google Scholar
  44. 44.
    J. Li, R. Jia, X. Tang, X. Zhao, S. Li, J. Phys. D Appl. Phys. 46, 325304 (2003)CrossRefGoogle Scholar
  45. 45.
    L. Xie, X. Huang, B.W. Li, C. Zhi, T. Tanakae, P. Jiang, Phys. Chem. Chem. Phys. 15, 17560 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Bhadra, MdG Masud, S.K. De, B.K. Chaudhuri, J. Phys. D Appl. Phys. 45, 485002 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Piyush Kumar Patel
    • 1
  • K. L. Yadav
    • 1
  • Shankar Dutta
    • 2
  1. 1.Department of Physics, Smart Materials Research LaboratoryIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Solid State Physics LaboratoryDefence Research and Development OrganisationNew DelhiIndia

Personalised recommendations