Advertisement

Structural, microstructural, optical and electrical properties of spray deposited rare-earth metal (Sm) ions doped CdO thin films

  • P. Velusamy
  • R. Ramesh Babu
  • K. Ramamurthi
  • J. Viegas
  • E. Elangovan
Article

Abstract

Rare-earth metal, samarium (Sm) ions, doped cadmium oxide (CdO) thin films were deposited on microscopic glass substrates at 300 °C by a homemade spray pyrolysis experimental setup. The deposited films were characterized for their structural, microstructural, optical and electrical properties. X-ray diffraction analysis confirmed that the deposited films belong to the cubic crystal system. The undoped films show a slight preferential growth along (111) diffraction plane, and the (200) plane emerged as the preferential growth direction when the Sm-doping is higher than 0.75 wt%. Field emission scanning electron microscopy analysis reveals that the average grain size and surface morphology of CdO films are effectively modified by various Sm-doping concentration. The elemental composition of the deposited films was analyzed using energy dispersive spectroscopy. The metal oxide (Cd–O) bond vibrations were observed at 319, 389, 551,779 and 941 cm−1 by micro-Raman studies at room temperature. Oxidation state of Sm3+ was confirmed by X-ray photoelectron spectroscopy analysis. A transmittance (ranging 83–86 %) in the visible and NIR region was observed for the various Sm concentrations. The optical band gap estimated varies between 2.39 and 2.67 eV, depending on the Sm-doping concentration. The negative sign of Hall coefficient confirmed the n-type conductivity and the mobility and carrier concentration are in the 45–78 cm2/V s, and 1.0 × 1020–3.36 × 1020 cm−3 range respectively.

Keywords

Spray Pyrolysis Texture Coefficient Spray Pyrolysis Technique Undoped Film Field Emission Scanning Electron Microscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author, P. Velusamy sincerely acknowledge the Bharathidasan University, Tiruchirappalli-620 024 for the financial support provided to carry out this work under the University Research Fellowship Scheme (URF-Ref. No. 47363/Ph.D1/2010). The authors thank Dr. Vasant Sathe, UGC-DAE-CSR, Indore for micro Raman analysis. The author E. Elangovan thanks Mike Tiner and Mustapha Jouiad from Microscopic Suite of Masdar Institute for the facilities (XRD and SEM) and their knowledge transfer.

References

  1. 1.
    L. Zhao, J. Lian, Y. Liu, Q. Jiang, Appl. Surf. Sci. 252, 8451 (2006)CrossRefGoogle Scholar
  2. 2.
    C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Mater. Sci. Eng., B 122, 67 (2005)CrossRefGoogle Scholar
  3. 3.
    Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002)CrossRefGoogle Scholar
  4. 4.
    L.M. Su, N. Grote, F. Schmitt, Electron. Lett. 20, 716 (1984)CrossRefGoogle Scholar
  5. 5.
    R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, G. Kiriakidis, J. Appl. Phys. 96, 1398 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Cruz, G. Delgado, R. Perez, S. Sandoval, O. Sandoval, C.I. Romero, J. Marin, O. Angel, Thin Solid Films 493, 83 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Koh, Y. Han, J. Lee, U. Yeo, J. Cho, Thin Solid Films 496, 81 (2006)CrossRefGoogle Scholar
  8. 8.
    A.K. Prasad, D.J. Kubinski, P.I. Gouma, Sens. Actuators, B: Chem. 93, 25 (2003)CrossRefGoogle Scholar
  9. 9.
    C.H. Champness, C.H. Chan, Sol. Energy Mater. Sol. Cells 37, 75 (1995)CrossRefGoogle Scholar
  10. 10.
    R.S. Mane, H.M. Pathan, C.D. Lokhande, H. Sung-Hwan, Sol. Energy 80, 185 (2006)CrossRefGoogle Scholar
  11. 11.
    R.R. Salunkhe, C.D. Lochande, Sens. Actuators B: Chem 129, 345 (2008)CrossRefGoogle Scholar
  12. 12.
    Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002)CrossRefGoogle Scholar
  13. 13.
    O. Gomez Daza, A. Arias-Carbajal Readigos, J. Campos, M.T.S. Nair, P.K. Nair, Mod. Phys. Lett. B 17, 609 (2001)CrossRefGoogle Scholar
  14. 14.
    J.A.A. Selvan, A.E. Delahoy, S. Guo, Y.M. Li, Sol. Energy Mater. Sol. Cells 90, 3371 (2006)CrossRefGoogle Scholar
  15. 15.
    T. Minami, S. Ida, T. Miyata, Thin Solid Films 416, 92 (2002)CrossRefGoogle Scholar
  16. 16.
    S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrog. Energy 34, 5260 (2009)CrossRefGoogle Scholar
  17. 17.
    Powder Diffraction File, International Centre for Diffraction Data (ICDD), Reference Code: 00-005-0640Google Scholar
  18. 18.
    K.L. Chopra, S. Ranjan, Thin Film Solar Cells (Plenum Press, New York, 1993)Google Scholar
  19. 19.
    M.K.R. Khan, M. AzizarRahman, M. Shahjahan, M. Mozibur Rahman, M.A. Hakim, D. Kumar Saha, J.U. Khan, Curr. Appl. Phys. 10, 790 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Maity, K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 90, 597 (2006)CrossRefGoogle Scholar
  21. 21.
    R. Kumaravel, S. Menaka, S. Regina Mary Snega, K. Ramamurthi, K. Jeganathan, Mater. Chem. Phys. 122, 444 (2010)CrossRefGoogle Scholar
  22. 22.
    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr. Appl. Phys. 9, 673 (2009)CrossRefGoogle Scholar
  23. 23.
    B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Appl. Surf. Sci. 256, 2910 (2010)CrossRefGoogle Scholar
  24. 24.
    R. Kumaravel, K. Ramamurthi, V. Krishnakumar, J. Phys. Chem. Solids 71, 1545 (2010)CrossRefGoogle Scholar
  25. 25.
    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Mater. Lett. 62, 3373 (2008)CrossRefGoogle Scholar
  26. 26.
    R. Ferro, J.A. Rodroguez, Thin Solid Films 347, 295 (1999)CrossRefGoogle Scholar
  27. 27.
    I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, F. Atay, J. Alloys Compd. 509, 1947 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, C.I. Zuniga-Romero, O. Zelaya-Angel, Thin Solid Films 515, 5381 (2007)CrossRefGoogle Scholar
  29. 29.
    A.A. Dakhel, Opt. Mater. 31, 691 (2009)CrossRefGoogle Scholar
  30. 30.
    A.A. Dakhel, Thin Solid Films 518, 1712 (2010)CrossRefGoogle Scholar
  31. 31.
    A.V. Moholkar, G.L. Agawane, K.U. Sim, Y. Kwon, K.Y. Rajpure, J.H. Kim, Appl. Surf. Sci. 257, 93 (2010)CrossRefGoogle Scholar
  32. 32.
    R.J. Deokate, S.V. Salunkhe, G.L. Agawane, B.S. Pawar, S.M. Pawar, K.Y. Rajpure, A.V. Moholkar, J.H. Kim, J. Alloys Compd. 496, 357 (2010)CrossRefGoogle Scholar
  33. 33.
    A.A. Dakhel, Mater. Chem. Phys. 130, 398 (2011)CrossRefGoogle Scholar
  34. 34.
    B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Vacuum 85, 861 (2011)CrossRefGoogle Scholar
  35. 35.
    F. Atay, I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, J. Mater. Sci.: Mater. Electron. 22, 492 (2011)Google Scholar
  36. 36.
    A.A. Dakhel, Phys. Stat. Solidi A 205, 2704 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Dou, R.G. Egdell, T. Walker, D.S.L. Law Beamson, Surf. Sci. 398, 241 (1998)CrossRefGoogle Scholar
  38. 38.
    F. Yakuphanoglu, Sol. Energy 85, 2704 (2011)CrossRefGoogle Scholar
  39. 39.
    R.K. Gupta, M. Cavas, F. Yakuphanoglu, Spectrochim. Acta Mol. Biomol. Spectros. 95, 107 (2012)CrossRefGoogle Scholar
  40. 40.
    F. Yakuphanoglu, J. Sol-Gel. Sci. Technol. 59, 569 (2011)CrossRefGoogle Scholar
  41. 41.
    Periodic Table of Elements-Sorted by Ionic Radius. (1995–2008) http://EnvironmentalChemistry.com/yogi/periodic/ionicradius.html
  42. 42.
    K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, K. Sekar, C.P.G. Vallabhan, Semicond. Sci. Technol. 9, 1827 (1994)CrossRefGoogle Scholar
  43. 43.
    D.M. Ellis, S.J.C. Irvien, J. Mater. Sci.: Mater. Electron. 15, 369 (2004)Google Scholar
  44. 44.
    S. Jin, Y. Yang, J.E. Medvedeva, L. Wang, S. Li, N. Cortes, J.R. Ireland, A.W. Metz, J. Ni, M.C. Hersam, A.J. Freeman, T.J. Marks, Chem. Mater. 20, 220 (2008)CrossRefGoogle Scholar
  45. 45.
    N. Ueda, H. Maeda, H. Hosono, H. Kawazoe, J. Appl. Phys. 84, 6174 (1998)CrossRefGoogle Scholar
  46. 46.
    P.K. Ghosh, S. Das, S. Kundoo, K.K. Chattopadhyay, J. Sol-Gel. Sci. Technol. 34, 173 (2005)CrossRefGoogle Scholar
  47. 47.
    Z. Biju, H. Wen, J. Semicond. 34, 5 (2013)Google Scholar
  48. 48.
    R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, Appl. Surf. Sci. 255, 2414 (2008)CrossRefGoogle Scholar
  49. 49.
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)CrossRefGoogle Scholar
  50. 50.
    E. Fortunato, P. Barquinha, A. Pimental, L. Pereira, G. Goncalves, Phys. Sat. Sol (RRL) 1, 34 (2007)CrossRefGoogle Scholar
  51. 51.
    S.J. Seo, C.G. Choi, Y.H. Hwang, B.S. Bae, J. Phys. D Appl. Phys. 42, 035106 (2009)CrossRefGoogle Scholar
  52. 52.
    D.H. Lee, Y.J. Chang, G.S. Herman, C.H. Chang, Adv. Mater. 19, 843 (2007)CrossRefGoogle Scholar
  53. 53.
    C. Girotto, D. Moia, B.P. Rand, P. Heremans, Adv. Fun. Mater. 21, 64 (2010)CrossRefGoogle Scholar
  54. 54.
    A. Bashir, P.H. Wöbkenberg, J. Smith, J.M. Ball, G. Adamopoulos, D.D.C. Bradley, T.D. Anthopoulos, Adv. Mater. 21, 2226 (2009)CrossRefGoogle Scholar
  55. 55.
    G. Adamopoulos, A. Bashir, S. Thomas, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingelin, R.C. Maher, L.F. Cohen, D.D.C. Bradley, T.D. Anthopoulos, Adv. Mater. 22, 4764 (2010)CrossRefGoogle Scholar
  56. 56.
    G. Adamopoulos, S. Thomas, D.D.C. Bradley, M.A. McLachlan, T.D. Anthopoulos, Appl. Phys. Let. 98, 123503 (2011)CrossRefGoogle Scholar
  57. 57.
    K.Y. Rajpure, C.H. Bhosale, Mater. Chem. Phys. 73, 6 (2002)CrossRefGoogle Scholar
  58. 58.
    W.R. Runyan, T.J. Shaffner, Semiconductor Measurements and Instrumentation, vol. 65 (McGraw-Hill, New York, 1998)Google Scholar
  59. 59.
    E. Elangovan, K. Ramamurthi, J. Optoelectron. Adv. Mater. 5, 45 (2003)Google Scholar
  60. 60.
    A.A. Dakhel, J. Alloys Compd. 475, 51 (2009)CrossRefGoogle Scholar
  61. 61.
    B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley, Massachusetts, 1956)Google Scholar
  62. 62.
    S. Sen, S.K. Halder, S.P. Sen Gupta, J. Phys. Soc. Japan. 38, 1643 (1975)CrossRefGoogle Scholar
  63. 63.
    C.K. De, N.K. Mishra, Indian J. Phys. 71, 530 (1997)Google Scholar
  64. 64.
    W.K. Park, J.O. Hertogs, J.S. Moodera, J. Appl. Phys. 91, 8093 (2002)CrossRefGoogle Scholar
  65. 65.
    E. Lifshin, X-ray Characterization of Materials, 37th edn. (Wiley, New York, 1999)CrossRefGoogle Scholar
  66. 66.
    T.K. Subramanyam, S. Uthanna, B.S. Naidu, Mater. Lett. 35, 214 (1998)CrossRefGoogle Scholar
  67. 67.
    T.D. Nguyen, C.T. Dinh, T.O. Do, Langmuir 25, 11142 (2009)CrossRefGoogle Scholar
  68. 68.
    Z.V. Popovic, G. Stanisic, D. Stojanovic, R. Kostic, Phys. Status Solidi B 165, 112 (1991)CrossRefGoogle Scholar
  69. 69.
    G. Schaackt, N. Uhle, Solid State Commun. 19, 315 (1976)CrossRefGoogle Scholar
  70. 70.
    K.H. Rieder, B.A. Weinstein, M. Cardona, H. Bilz, Phys. Rev. B 8, 4780 (1973)CrossRefGoogle Scholar
  71. 71.
    C.S. Barrett, T.B. Masalski, Structure of Metals, vol. 204 (Pergamon, Oxford, 1980)Google Scholar
  72. 72.
    M. Vegineshwaran, R. Chandiramolui, B.G. Jayaprakash, D. Balamurugan, J. Appl. Sci. 12, 1754 (2012)CrossRefGoogle Scholar
  73. 73.
    J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North Holland Press, Amsterdam, 1972), p. 277Google Scholar
  74. 74.
    G. Haacke, Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. Velusamy
    • 1
  • R. Ramesh Babu
    • 1
  • K. Ramamurthi
    • 2
  • J. Viegas
    • 3
  • E. Elangovan
    • 3
  1. 1.Crystal Growth and Thin Film Laboratory, Department of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and TechnologySRM UniversityKattankulathurIndia
  3. 3.Nano-Optics and Optoelectronic (NOOR) Laboratory, i-Micro, EECS DepartmentMasdar InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations