Effect of Nb addition on the magnetic properties and microstructure of FePCCu nanocrystalline alloy



The effects of Nb addition on the microstructure, crystallisation behavior, and soft magnetic properties of Fe83.25−xP9C7Cu0.75Nbx (x = 0, 0.5, 1, 2, 3) alloys were investigated. The experimental results demonstrate that proper Nb addition improves the glass-forming ability and enhances the soft magnetic properties of this alloy system. The Fe82.75P9C7Cu0.75Nb0.5 alloy annealed at 573–773 K for 10 min, in which α-Fe nanocrystalline phase with diameter of 5–20 nm precipitated from the amorphous matrix, while alloy annealed at 743 K shows the best soft magnetic properties. The resulting Fe82.75P9C7Cu0.75Nb0.5 nanocrystalline alloy exhibited a high saturation magnetic flux density, B s , of 1.66 T; a low coercivity, H c , of 6.8 A/m; and a high effective permeability, μ e , of 29,000 at 1 kHz. These characteristics are superior to corresponding properties of FePC alloys. These results indicate that this alloy is a promising soft magnetic material.


Amorphous Alloy Amorphous Matrix Effective Permeability Magnetocrystalline Anisotropy Soft Magnetic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China under Grant 51341002, by the Science and Technology Program of Beijing under Grant Z141100003814007, and by the National Scientific and Technological Support Projects under Grant 2013BAE08B01.


  1. 1.
    Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, K. Hono, Acta Mater. 57, 4463 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Makino, T. Bitoh, A. Inoue, T. Masumoto, J. Appl. Phys. 81, 2736 (1997)CrossRefGoogle Scholar
  3. 3.
    A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, J. Appl. Phys. 105, 07A308 (2009)Google Scholar
  4. 4.
    Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)CrossRefGoogle Scholar
  5. 5.
    X. Xi, L. Li, B. Zhang, W. Wang, Y. Wu, Phys. Rev. Lett. 99, 095501 (2007)CrossRefGoogle Scholar
  6. 6.
    Z.-P. Wen, Z. Wang, R.-M. Shi, J. Wang, H. Zhang, J. Appl. Phys. 113, 17A320 (2013)Google Scholar
  7. 7.
    S.X. Zhou, B.S. Dong, J.Y. Qin, D.R. Li, S.P. Pan, X.F. Bian, Z.B. Li, J. Appl. Phys. 112, 023514 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 70, 6232 (1991)CrossRefGoogle Scholar
  9. 9.
    P. Pawlik, K. Pawlik, H.A. Davies, J.J. Wysłocki, W. Kaszuwara, M. Leonowicz, J. Magn. Magn. Mater. 304, e733 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Dong, S. Zhou, M. Hu, F. Kong, W. Chen, B. Shen, Sci. China Technol. Sci. 53, 1590 (2010)CrossRefGoogle Scholar
  11. 11.
    V. Chunchu, G. Markandeyulu, J. Appl. Phys. 113, 17A321 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Mao, Z. Han, F. Xu, W. Gao, B. Gu, Y. Du, Appl. Phys. A 81, 839 (2005)CrossRefGoogle Scholar
  13. 13.
    V. Cremaschi, G. Sánchez, H. Sirkin, Phys. Rev. B: Condens. Matter 354, 213 (2004)Google Scholar
  14. 14.
    A. Makino, T. Bitoh, A. Inoue, T. Masumoto, Scripta Mater. 48, 869 (2003)CrossRefGoogle Scholar
  15. 15.
    M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V.R.V. Ramanan, D.E. Laughlin, Scripta Mater. 48, 881 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Gavrilovic, L.D. Rafailovic, D.M. Minic, J. Wosik, P. Angerer, D.M. Minic, J. Alloys Compd. 509, s119 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Miguel, A.P. Zhukov, J. Gonzalez, J. Non-Cryst. Solids 287, 355 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Makino, Magn. Trans. IEEE 48, 1331 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Urata, M. Yamaki, M. Takahashi, K. Okamoto, H. Matsumoto, S. Yoshida, A. Makino, J. Appl. Phys. 111(1–3), 07A335 (2012)Google Scholar
  20. 20.
    R. Xiang, S.X. Zhou, B.S. Dong, G.Q. Zhang, Z.Z. Li, Y.G. Wang, J. Mater. Sci. Mater. Electron. 25, 2979 (2014)CrossRefGoogle Scholar
  21. 21.
    S.H. Lim, W.K. Pi, T.H. Noh, H.J. Kim, I.K. Kang, J. Appl. Phys. 73, 6591 (1993)CrossRefGoogle Scholar
  22. 22.
    X.Y. Zhang, F.X. Zhang, J.W. Zhang, W. Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, W.K. Wang, J. Appl. Phys. 84(4), 1918 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Yan, H. Tong, S. Tao, J.H. Liu, J. Alloys Compd. 505, 264 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Takeuchi, A. Inoue, Mater. Trans. 46(12), 2817 (2005)CrossRefGoogle Scholar
  25. 25.
    A. Takeuchi, A. Inoue, Mater. Trans. 41(11), 1372 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Calvo-Dahlborg, U. Dahlborg, F. Haussler, E.D. Tabachnikova, V.Z. Bengus, Appl. Phys. A 74, s1131 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  28. 28.
    F.L. Kong, H. Men, B.L. Shen, G.Q. Xie, Magn. Trans. IEEE 47, 3180 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Hernando, T. Kulik, Phys. Rev. B 49(10), 7064 (1994)CrossRefGoogle Scholar
  30. 30.
    C. Smith, S. Katakam, S. Nag, Y.R. Zhang, J.Y. Law, R.V. Ramanujan, N.B. Dahotre, R. Banerjee, Metall. Mater. Trans. A 45A, 2998 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Xiang
    • 1
  • S. X. Zhou
    • 1
  • B. S. Dong
    • 1
  • Y. G. Wang
    • 2
  1. 1.Advanced Technology & Materials Co., Ltd.China Iron & Steel Research Institute GroupBeijingChina
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations