Preparation and characterization of magnetic polyimide composite films copolymerized with aminophthalocyanine-coated Fe3O4 nanocrystals

  • Changwei Liu
  • Chunyan Qu
  • Dezhi Wang
  • Hao Feng
  • Ping Liu
  • Yang Zhang


Iron-aminophthalocyanine-coated Fe3O4 hybrid nanospheres were synthesized by a one-step solvent-thermal method and followed by a catalytic hydrogenation route. To effectively utilize the excellent magnetic sensitivity of the functional aminophthalocyanine/Fe3O4 hybrid nanospheres, we have developed a novel series of flexible Fe3O4@polyimide (PI) composite films, which was prepared with various Fe3O4/FePc–NH2 nanoparticle loadings (7, 15, 27 and 40 wt%). All of the flexible thin films have uniform morphology without any agglomeration, which had been confirmed by the analysis of scanning electron microscope images. The above composite films, which have the higher saturation magnetization compared with that of the corresponding pure Fe3O4/PI films, illustrate that the excellent compatibility and homogeneous dispersion of the amine-coated Fe3O4 particles in the PI matrix based on the strong chemisorptions of PI onto the Fe3O4 surfaces and polymerization reactions between the amine groups and anhydride groups could significantly affect the magnetic properties of nanocomposite materials. The observed enhanced thermal stabilities, dramatic increased storage modulus and increased glass transfer temperatures (Tgs) of the magnetic films with increasing the particle loadings indicate that the composites could be a candidate to be used as high-performance absorbing materials.


Fe3O4 Polyimide Composite Film Phthalocyanine Dynamic Mechanical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Youth Science Foundation of Heilongjiang Province, China (Grant No. QC2014C008) and Youth Science Foundation of Heilongjiang Academy of Sciences (No. 2014-YQ-01).


  1. 1.
    M. Takafuji, S. Ide, H. Ihara, Z.H. Xu, Chem. Mater. 16, 1977 (2004)CrossRefGoogle Scholar
  2. 2.
    A.K. Cheetham, C.N.R. Rao, Science 318, 58 (2007)CrossRefGoogle Scholar
  3. 3.
    P. Bhattacharya, C.K. Das, J. Mater. Sci.: Mater. Electron. 24, 1927 (2013)Google Scholar
  4. 4.
    J. Ma, J.M. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062 (2011)CrossRefGoogle Scholar
  5. 5.
    C.F. Matos, F. Galembeck, A.J.G. Zarbin, Carbon 78, 46 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Rossier, F.M. Koehler, E.K. Athanassiou, R.N. Grass, B. Aeschlimann, D. Günther, W.J. Stark, J. Mater. Chem. 19, 8239 (2009)CrossRefGoogle Scholar
  7. 7.
    S.D. Kong, W.Z. Zhang, J.H. Lee, K. Brammer, R. Lal, M.K.S. Jin, Nano Lett. 10, 5088 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Streckova, J. Fuezer, L. Kobera, Mater. Chem. Phys. 147, 649 (2014)CrossRefGoogle Scholar
  9. 9.
    X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du, P. Xu, J. Phys. Chem. C 115, 12350 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Kumar, H.N. Lee, R. Kumar, J. Mater. Sci.: Mater. Electron. 25, 4553 (2014)Google Scholar
  11. 11.
    F. Qin, H. Peng, Prog. Mater. Sci. 58, 183 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Yang, Y. You, Y. Liu, Z. Yang, Microch. Acta 180, 379 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Fan, J. Chen, J.M. Ruan, Z.C. Zhou, J.P. Zou, Polym. Plast. Technol. 48, 658 (2009)CrossRefGoogle Scholar
  14. 14.
    E. Antunes, N. Rapulenyane, M. Ledwaba, C. Litwinski, W. Chidawanyika, T. Nyokong, Inorg. Chem. Commun. 29, 60 (2013)CrossRefGoogle Scholar
  15. 15.
    J.S. Basuki, L. Esser, P.B. Zetterlund, M.R. Whittaker, C. Boyer, T.P. Davis, Macromolecules 46, 6038 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Cheng, M.-D. Zhou, S.-Y. Zhang, A.C.S. Appl, Mater. Interfaces 6, 12719 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Liu, M. Yu, Y. Zhang, C. Wang, H. Lu, A.C.S. Appl, Mater. Interfaces 6, 7823 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Lou, J. Huang, T. Li, H. Hu, B. Hu, Y. Zhang, J. Mater. Sci.: Mater. Electron. 25, 1193 (2014)Google Scholar
  19. 19.
    T.-M. Liu, J. Yu, C.A. Chang, A. Chiou, H.K. Chiang, Y.-C. Chuang, C.-H. Wu, C.-H. Hsu, P.-A. Chen, C.-C. Huang, Sci. Rep. (2014). doi: 10.1038/srep05593
  20. 20.
    T. Chen, X. Zhang, J. Qian, S. Li, X. Jia, H.-J. Song, J. Mater. Sci.: Mater. Electron. 25, 1381 (2014)Google Scholar
  21. 21.
    S. Dong, M. Xu, J. Wei, X. Yang, X. Liu, J. Magn. Magn. Mater. 349, 15 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Tong, M. Liu, Y. Long, X. Liu, J. Appl. Polym. Sci. 131, 40418 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Wei, H. Tang, X. Liu, J. Mater. Sci.: Mater. Electron. 25, 520 (2014)Google Scholar
  24. 24.
    E. Unsal, M. Cakmak, Macromolecules 46, 8616 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Xu, Y. Yang, Z. Xie, J. Mater. Sci.: Mater. Electron. 25, 3028 (2014)Google Scholar
  26. 26.
    Y.H. Sim, H. Wang, F.Y. Li, M.L. Chua, T.-S. Chung, M. Toriida, S. Tamai, Carbon 53, 101 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Cui, W. Liu, L. Yuan, D. Wu, Z. Wu, RSC Adv. 34, 14390 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Fan, W. Fan, Z. Zheng, Y. Zhang, J. Luo, G. Liang, D. Zhang, J. Mater. Sci.: Mater. Electron. 25, 5060 (2014)Google Scholar
  29. 29.
    H. Jia, J. Jing, X. Zhao, W. Wang, D. Wang, C. Liu, H. Zhou, Mater. Lett. 68, 86 (2012)CrossRefGoogle Scholar
  30. 30.
    S.L. Qi, D.Z. Wu, Z.P. Wu, W.C. Wang, R.G. Jin, Polymer 47, 3150 (2006)CrossRefGoogle Scholar
  31. 31.
    C.M. Chang, C.L. Chang, C.C. Chang, Macromol. Mater. Eng. 291, 1521 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Wei, M. Xu, J. Zhang, R. Zhao, X. Liu, J. Magn. Magn. Mater. 324, 2696 (2012)CrossRefGoogle Scholar
  33. 33.
    Y.J. Lei, R. Zhao, G.H. Hu, X.L. Yang, X.B. Liu, J. Mater. Sci. 47, 4473 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Ree, Macromol. Res. 14, 1 (2006)CrossRefGoogle Scholar
  35. 35.
    J. Wei, R. Zhao, Y. Zhan, F. Meng, X. Yang, M. Xu, X. Liu, Appl. Surf. Sci. 258, 6705 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Liu, J. Cheng, R. Che, J. Xu, M. Liu, Z. Liu, A.C.S. Appl, Mater. Interfaces 5, 2503 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Sun, Q. Zhang, F. Guo, J. Gu, J. Zhang, J. Appl. Polym. Sci. 125, 725 (2012)CrossRefGoogle Scholar
  38. 38.
    T. Seckin, S. Vural, S. KÖytepe. Polym. Bull. 64, 115 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Changwei Liu
    • 1
  • Chunyan Qu
    • 1
  • Dezhi Wang
    • 1
  • Hao Feng
    • 1
  • Ping Liu
    • 1
  • Yang Zhang
    • 1
  1. 1.Institute of PetrochemistryHeilongjiang Academy of SciencesHarbinChina

Personalised recommendations