Advertisement

Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer

  • Burak Y. Kadem
  • Aseel K. Hassan
  • Wayne Cranton
Article

Abstract

Solution-processed thin films of tris(8-hydroxyquinoline)aluminum (Alq3) have been produced and examined as an electron transport layer in P3HT:PCBM bulk heterojunction organic solar cells. UV–Vis absorption, XRD, SEM and current density–voltage (J–V) measurements both in dark and under illumination have been carried out. Absorption spectra of the active layer show typical P3HT:PCBM absorption features with a maximum absorption peak around 500 nm and two vibronic shoulders around 550 and 600 nm which were attributed to the inter-chain stacking of P3HT. Furthermore, XRD measurements revealed that the co-solvent processed film shows better crystallinity than the mono-solvent film. On the other hand, SEM images show a clear pinholing effect in the DCB-processed film which may cause leakage current that reduces the fill factor and overall power conversion efficiency (PCE) of the organic solar cell (OSC). Alq3 absorption spectra show an absorption peak in the UV region, with an optical band gap of 2.83 eV. The incorporation of Alq3 films as an electron transport layer in ITO/PEDOT:PSS/P3HT:PCBM/Alq3/Al structure has resulted in a significant enhancement in the performance of the studied OSC devices. The use of mixed solvents of dichlorobenzene and chlorobenzene (DCB:DB) together with the inclusion of Alq3 layer has resulted in enhanced PCE which reached 3.92 %.

Keywords

Active Layer High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency High Occupied Molecular Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Burak Kadem wishes to acknowledge the Ph.D. scholarship awarded by the Ministry of Higher Education and Scientific Research in Iraq. The help in providing access to glove box facility by Dr. Heming Wang, Yaqub Rahaq and Vikas Kumar is gratefully acknowledged.

References

  1. 1.
    F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)CrossRefGoogle Scholar
  2. 2.
    F. Reisdorffer, O. Haas, P. Le Rendu, T.P. Nguyen, Co-solvent effects on the morphology of P3HT:PCBM thin films. Synth. Met. 161, 2544–2548 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Sun, J. Liu, Y. Ding, Y.-C. Han, Controlling the surface composition of PCBM in P3HT/PCBM blend by using mixed solvents with different evaporation rates. Chin. J. Polym. Sci. 31, 1029–1037 (2013)CrossRefGoogle Scholar
  4. 4.
    L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20, 2575–2598 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Vandewal, W.D. Oosterbaan, S. Bertho, V. Vrindts, A. Gadisa, L. Lutsen, D. Vanderzande, J.V. Manca, Varying polymer crystallinity in nanofiber poly(3-alkylthiophene):PCBM solar cells: influence on charge-transfer state energy and open-circuit voltage Appl. Phys. Lett. 95, 123303 (2009)Google Scholar
  6. 6.
    B. Qi, J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315 (2012)CrossRefGoogle Scholar
  7. 7.
    A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chem. Mater. 16, 4556–4573 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Dey, P. Vivo, A. Efimov, H. Lemmetyinen, Enhanced performance and stability of inverted organic solar cells by using novel zinc–benzothiazole complexes as anode buffer layers. J. Mater. Chem. 21, 15587–15592 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Cuba, G. Muralidharan, Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films. J. Lumin. 156, 1–7 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Hoshi, K. Kumagai, K. Inoue, S. Enomoto, Y. Nobe, M. Kobayashi, Electronic absorption and emission spectra of Alq3 in solution with special attention to a delayed fluorescence. J. Lumin. 128, 1353–1358 (2008)CrossRefGoogle Scholar
  11. 11.
    A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107 (2008)CrossRefGoogle Scholar
  12. 12.
    K.R.J. Thomas, M. Velusamy, J.T. Lin, C.H. Chuen, Y.-T. Tao, Hexaphenylphenylene dendronised pyrenylamines for efficient organic light-emitting diodes. J. Mater. Chem. 15, 4453–4459 (2005)CrossRefGoogle Scholar
  13. 13.
    G.T. Yue, J.H. Wu, Y.M. Xiao, H.F. Ye, J.M. Lin, M.L. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT hetrojunction. Chin. Sci. Bull. 56, 325–330 (2011)CrossRefGoogle Scholar
  14. 14.
    P. Morvillo, I.A. Grimaldi, R. Diana, F. Loffredo, F. Villani, Study of the microstructure of inkjet printed P3HT:PCBM blend for photovoltaic applications. J. Mater. Sci. 48, 2920–2927 (2013)CrossRefGoogle Scholar
  15. 15.
    R. Ramani, S. Alam, A comparative study on the influence of alkyl thiols on the structural transformations in P3HT/PCBM and P3OT/PCBM blends. Polymer 54, 6785–6792 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): fullerene. Appl. Phys. Lett. 86, 201120 (2005)CrossRefGoogle Scholar
  17. 17.
    J.-S. Lee, B.S. Kim, N.-G. Park, Non-thermal phase separation of P3HT and PCBM using polar aprotic solvents for enhancement of photovoltaic performance in bulk heterojunction solar cells. Synth. Met. 176, 26–30 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.-W. Sh, M.-M. Shi, J.-C. Huang, H.-Z. Chen, M. Wang, X.-D. Liu, Y.-G. Ma, H. Xu, B. Yang, Fluorinated Alq3 derivatives with tunable optical properties. Chem. Commun. 18, 1941–1943 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Yuan, Z. Li, T. Zhang, W. Miao, Z. Zhang, Enhanced light absorption of amorphous silicon thin film by substrate control and ion irradiation. Nanoscale Res. Lett. 9, 173 (2014)CrossRefGoogle Scholar
  20. 20.
    A. El-Khodary, Evolution of the optical, magnetic and morphological properties of PVA films filled with CuSO4. Phys. B 405, 4301–4308 (2010)Google Scholar
  21. 21.
    P. Dalasin´ski, Z. Łukasiak, M. Wojdyła, M. Re_barz, W. Bała, Study of optical properties of TRIS (8-hydroxyquinoline) aluminum (III). Opt. Mater. 28, 98–101 (2006)CrossRefGoogle Scholar
  22. 22.
    S.K. Jang, S.C. Gong, H.J. Chang, Effects of various solvent addition on crystal and electrical properties of organic solar cells with P3HT:PCBM active layer. Synth. Met. 162, 426–430 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Grevin, P. Rannou, R. Payerne, A. Pron, J.P. Travers, Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly 3-hexylthiophene films. J. Chem. Phys. 118, 7097–7102 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Sugiyama, T. Kojima, H. Fukuda, H. Yashiro, T. Matsuura, Y. Shimoyama, ESR and X-ray diffraction studies on thin films of poly-3-hexylthiophene: molecular orientation and magnetic interactions. Thin Solid Films 516, 2691–2694 (2008)CrossRefGoogle Scholar
  26. 26.
    J.D. Roehling, I. Arslan, A.J. Moul, Controlling microstructure in poly(3-hexylthiophene) nanofibers. J. Mater. Chem. 22, 2498–2506 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J.V. Manca, P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006)CrossRefGoogle Scholar
  28. 28.
    E.A. Parlak, The blend ratio effect on the photovoltaic performance and stability of poly (3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and poly(3-octylthiophene): PCBM solar cells. Sol. Energy Mater. Sol. Cells 100, 174–184 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.S. Kim, Y. Lee, J.K. Kim, E.-O. Seo, E.-W. Lee, W. Lee, S.-H. Han, S.-H. Lee, Effect of solvents on the performance and morphology of polymer photovoltaic devices. Curr. Appl. Phys. 10, 985–989 (2010)CrossRefGoogle Scholar
  30. 30.
    T.S. Shafai, R.D. Gould, Measurements and modeling of the DC temperature dependence of electrical conductivity in thin films of lead phthalocyanine. Thin Solid Films 515, 1138–1141 (2006)CrossRefGoogle Scholar
  31. 31.
    D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, J.C. Hummelen, Temperature dependent characteristics of poly 3-hexylthiophene.-fullerene based heterojunction organic solar cells. J. Appl. Phys. 93, 3376–3383 (2003)CrossRefGoogle Scholar
  32. 32.
    D.H. Apaydın, D.E. Yıldız, A. Cirpan, L. Toppare, Optimizing the organic solar cell efficiency: role of the active layer thickness. Sol. Energy Mater. Sol. Cells 113, 100–105 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Zheng, L. Kunardi, C. Troadec, A.T.S. Wee, N. Chandrasekhar, Possible transition from space-charge-limited to injection-limited conduction in poly(3-hexylthiophene) thin films. Appl. Surf. Sci. 252, 4023–4025 (2006)CrossRefGoogle Scholar
  34. 34.
    A.J. Campbell, D.D.C. Bradley, D.G. Lidzey, Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes. J. Appl. Phys. 82, 6326 (1997)CrossRefGoogle Scholar
  35. 35.
    G. Yue, J. Wu, Y. Xiao, H. Ye, J. Lin, M. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chin. Sci. Bull. 56, 325–330 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Vivo, J. Jukola, M. Ojala, V. Chukharev, H. Lemmetyinen, Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air. Sol. Energy Mater. Sol. Cells 92, 1416–1420 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Liu, M. Tian, N. Wang, Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. J. Power Sources 250, 105–109 (2014)CrossRefGoogle Scholar
  38. 38.
    B.E. Lassiter, G. Wei, S. Wang, J.D. Zimmerman, V.V. Diev, M.E. Thompson, S.R. Forrest, Organic photovoltaics incorporating electron conducting exciton blocking layers. Appl. Phys. Lett. 98, 243307 (2011)CrossRefGoogle Scholar
  39. 39.
    Q.L. Song, F.Y. Li, H. Yang, H.R. Wu, X.Z. Wang, W. Zhou, J.M. Zhao, X.M. Ding, C.H. Huang, X.Y. Hou, Small-molecule organic solar cells with improved stability. Chem. Phys. Lett. 416, 42–46 (2005)CrossRefGoogle Scholar
  40. 40.
    C.-T. Chou, C.-H. Lin, M.-H. Wu, T.-W. Cheng, J.-H. Lee, C.-H.J. Liu, Y. Tai, S. Chattopadhyay, J.-K. Wang, K.-H. Chen, L.-C. Chen, Tuning open-circuit voltage in organic solar cells by magnesium modified Alq3. J. Appl. Phys. 110, 083104 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Burak Y. Kadem
    • 1
  • Aseel K. Hassan
    • 1
  • Wayne Cranton
    • 1
  1. 1.Material and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations