Significant change in micro mechanical, structural and electrical properties of MgB2 superconducting ceramics depending on argon ambient pressure and annealing duration



In this study, the effects of different Ar pressure (vacuum, 0, 10 and 20 bar) and different annealing times (0.5 and 1 h) on microstructural, mechanical and superconducting properties of the bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction and scanning electron microscopy measurements are performed for phase formation, crystal structure, lattice parameters, particle size analysis, grain orientations, grain connectivity, and surface morphology of MgB2 samples. The superconducting properties are studied by dc resistivity measurements. In this study we have focused on microhardness measurements to investigate the mechanical properties. Vickers microhardness test is employed for determination of mechanical properties of the samples. The experimental microhardness results are analyzed by Meyer’s law, proportional sample resistance model, elastic–plastic deformation model, Hays Kendall (HK) approach, and indentation induced cracking (IIC) model. HK approach is identified as the most appropriate model for MgB2 superconducting samples exhibiting the indentation size effect behavior; for the other samples that have reverse indentation size effect behavior IIC model is appointed as the most appropriate model.


Fracture Toughness Applied Load Vickers Microhardness Heat Treatment Time Indentation Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.


  1. 1.
    K. Sangwal, Mater. Chem. Phys. 63, 145 (2000)CrossRefGoogle Scholar
  2. 2.
    J. Gong, H. Miao, Z. Zhao, Z. Guan, load-dependence of the measured hardness of Ti (C, N)-based cermets. Mater. Sci. Eng. A 303, 179 (2001)CrossRefGoogle Scholar
  3. 3.
    B. Basu, N. Mukhopadhyay, K. Manisha, J. Eur. Ceram. Soc. 29, 801 (2009)CrossRefGoogle Scholar
  4. 4.
    O. Şahin, O. Uzun, U. Kölemen, N. Uçar, J. Phys. Condens. Matter 19, 306001 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Sangwall, B. Surowska, P. Blaziak, Mater. Chem. Phys. 77, 511 (2002)CrossRefGoogle Scholar
  6. 6.
    D.D. Graaf, M. Braciszewicz, H.T. Hintzen, M. Sopicka-Lizer, G. De With, J. Mater. Sci. 39, 2145 (2004)CrossRefGoogle Scholar
  7. 7.
    R.K. Marwaha, B.S. Shah, Cryst. Res. Technol. 23, 63–65 (1988)CrossRefGoogle Scholar
  8. 8.
    R. Bajpai, S.C. Datt, Indian J. Pure Appl. Phys. 24, 254 (1986)Google Scholar
  9. 9.
    G. Constantinidis, R.D. Tomlinson, H. Neumann, Mag. Lett. 57, 91 (1988)CrossRefGoogle Scholar
  10. 10.
    C. Ascheron, C. Haase, G. Kuhn, H. Neumann, Cryst. Res. Technol. 24, 33–35 (1989)CrossRefGoogle Scholar
  11. 11.
    J. Schmidt, W. Schnelle, Y. Grin, R. Kniep, Solid State Sci. 5, 535–539 (2003)CrossRefGoogle Scholar
  12. 12.
    U. Kölemen, J. Alloys Compd. 425, 429–435 (2006)CrossRefGoogle Scholar
  13. 13.
    T. Prikhna, W. Gawalek, Y. Savchuk, N. Sergienko, V. Moshchil, S. Dub, V. Sverdun, L. Kovalev, V. Penkin, M. Zeisberger, M. Wendt, G. Fuchs, T. Habisreuther, D. Litzkendorf, P. Nagorny, V. Melnikov, Phys. C. 595, 460–462 (2007)Google Scholar
  14. 14.
    M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 352–361 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Arda, O. Ozturk, E. Asikuzun, S. Ataoglu, Powder Technol. 235, 479–484 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Tosun, S. Ataoglu, L. Arda, O. Ozturk, E. Asikuzun, D. Akcan, O. Cakiroglu, Mater. Sci. Eng. A 590, 416–422 (2014)CrossRefGoogle Scholar
  17. 17.
    E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 1001–1010 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Ozkurt, J. Supercond. Nov. Magn. 27, 2407–2414 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Koralay, A. Arslan, S. Cavdar, O. Ozturk, E. Asikuzun, A. Gunen, A.T. Tasci, J. Mater. Sci. Mater. Electron. 24, 4270–4278 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Aydın, A. Babanli, S.P. Altintas, E. Asikuzun, N. Soylu, O. Ozturk, M. Dogruer, C. Terzioglu, G. Yildirim, J. Mater. Sci. Mater. Electron. 24, 4566–4573 (2013)CrossRefGoogle Scholar
  21. 21.
    D. Tabor, J. Inst. Metals 79, 1–18 (1951)Google Scholar
  22. 22.
    O. Sahin, O. Uzun, U. Kolemen, B. Duzgun, N. Ucar, Chin. Phys. Lett. 22, 3137–3140 (2005)CrossRefGoogle Scholar
  23. 23.
    J.B. Quinn, G.D. Quinn, J. Mater. Scı. 32, 4331–4346 (1997)CrossRefGoogle Scholar
  24. 24.
    M. L. Tarkanian, J.P. Neumann and L. Raymond, M. L. Tarkanian, J.P. Neumann, L. Raymond, in The Science of Hardness Testing and Its Research Application, ed. by J.H. Westbrook and H. Conrad (American Society for Metals, Metal Park, OH, 1973), pp. 187–198Google Scholar
  25. 25.
    C. Hays, E.G. Kendall, Metallography 6, 275–282 (1973)CrossRefGoogle Scholar
  26. 26.
    N. Gane, F.P. Bowden, J. Appl. Phys. 39, 1432–1435 (1968)CrossRefGoogle Scholar
  27. 27.
    R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24, 1947–1956 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Li, R.C. Bradt, J. Mat. Sci. 31, 1065–1070 (1996)CrossRefGoogle Scholar
  29. 29.
    P. Feltham, R. Banerjee, J. Mat. Sci. 27, 1626–1632 (1992)CrossRefGoogle Scholar
  30. 30.
    D.U. Gubser, A.W. Webb, Phys. Rev. Lett. 35, 104–107 (1975)CrossRefGoogle Scholar
  31. 31.
    L.D. Jennings, C.A. Swenson, Phys. Rev. 112, 31–43 (1958)CrossRefGoogle Scholar
  32. 32.
    J. Wittig, Z. Phys. 195, 27–215 (1966)Google Scholar
  33. 33.
    M.A. Il’ina, E.S. Itskevich, Zh. Eksp. Teor. Fiz. 61, 2357–2361 (1971)Google Scholar
  34. 34.
    T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, J.S. Abell, Phys. Rev. B 63, 2205 (2001)CrossRefGoogle Scholar
  35. 35.
    P. Bordet, M. Mezouar, M. Nunez-Regueiro, M. Monteverde, M.D. Nunez-Regueiro, N. Rogado, K.A. Regan, M.A. Hayward, T. He, S.M. Loureiro, R.J. Cava, Phys. Rev. B 64, 2502 (2001)CrossRefGoogle Scholar
  36. 36.
    J.E. Hirch, F. Marsiglio, Phys. Rev. B 64, 144523 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and ScienceKastamonu UniversityKastamonuTurkey
  2. 2.Research and Application CenterKastamonu UniversityKastamonuTurkey

Personalised recommendations