Advertisement

Palladium diffusion in germanium

  • A. Chroneos
  • R. V. Vovk
Article

Abstract

Palladium diffusion in germanium is fundamentally and technologically important as it has an extremely low activation energy and this can impact metal induced lateral crystallisation to produce large grain crystals. Recent theoretical studies calculated that the activation energy of migration of palladium in germanium is 0.03 eV. This constitute the experimental determination of the palladium diffusion properties very difficult. In the present study we calculate palladium diffusivity in germanium by employing theoretical results and comparing to the diffusion of copper in germanium. Finally, by employing a thermodynamic model we derive a relation describing palladium diffusivity to bulk materials properties.

Keywords

GeO2 Attempt Frequency Isothermal Bulk Modulus Interstitial Diffusion Hybrid Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007)Google Scholar
  2. 2.
    C. Janke, R. Jones, S. Öberg, P.R. Briddon, J. Mater. Sci. Mater. Electron. 18, 775 (2007)CrossRefGoogle Scholar
  3. 3.
    G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, H. Bracht, J. Appl. Phys. 109, 113527 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, A. Dimoulas, J. Phys. Condens. Matter. 24, 195802 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Chroneos, H. Bracht, Appl. Phys. Rev. 1, 011301 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. Mater. Electron. 19, 915 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Chroneos, J. Appl. Phys. 105, 056101 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Chroneos, U. Schwingenschlögl, A. Dimoulas, Ann. Phys. (Berlin) 524, 123 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Chroneos, J. Mater. Sci.: Mater. Electron. 24, 1741 (2013)Google Scholar
  10. 10.
    M. Werner, H. Mehrer, H.D. Hochheimer, Phys. Rev. B 32, 3930 (1985)CrossRefGoogle Scholar
  11. 11.
    A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Appl. Phys. Lett. 92, 172103 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E.E. Haller, H. Schmidt, Appl. Phys. Lett. 93, 162104 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E.E. Haller, J.S. Christensen, P. Werner, Phys. Rev. B 77, 235207 (2008)Google Scholar
  14. 14.
    A. Chroneos, R.W. Grimes, B.P. Uberuaga, H. Bracht, Phys. Rev. B 77, 235208 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Kube, H. Bracht, A. Chroneos, M. Posselt, B. Schmidt, J. Appl. Phys. 106, 063534 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, H. Bracht, Appl. Phys. Lett. 99, 072112 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)CrossRefGoogle Scholar
  18. 18.
    E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)CrossRefGoogle Scholar
  19. 19.
    H.A. Tahini, A. Chroneos, S.C. Middleburgh, U. Schwingenschlögl, R.W. Grimes, J. Mater. Chem. A 3, 3832 (2015). doi: 10.1039/C4TA06210H CrossRefGoogle Scholar
  20. 20.
    A. Giese, N.A. Stolwijk, H. Bracht, Appl. Phys. Lett. 77, 642 (2000)CrossRefGoogle Scholar
  21. 21.
    H. Bracht, Mater. Sci. Semicond. Process. 7, 113 (2004)CrossRefGoogle Scholar
  22. 22.
    S.R. Herd, P. Chaudhari, M.H. Brodsky, J. Non-Cryst, Solids 7, 309 (1972)Google Scholar
  23. 23.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 411 (1977)Google Scholar
  24. 24.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 2348 (1977)CrossRefGoogle Scholar
  25. 25.
    P. Varotsos, K. Alexopoulos, J. Phys. (Paris) Lett. 38, L455 (1977)Google Scholar
  26. 26.
    P. Varotsos, W. Ludwig, K. Alexopoulos, Phys. Rev. B 18, 2683 (1978)CrossRefGoogle Scholar
  27. 27.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 22, 3130 (1980)CrossRefGoogle Scholar
  28. 28.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 24, 904 (1981)CrossRefGoogle Scholar
  29. 29.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 30, 7305 (1984)CrossRefGoogle Scholar
  30. 30.
    P. Varotsos, J. Appl. Phys. 101, 123503 (2007)CrossRefGoogle Scholar
  31. 31.
    B.H. Zhang, X.P. Wu, Appl. Phys. Lett. 100, 051901 (2012)CrossRefGoogle Scholar
  32. 32.
    I. Sakelis, J. Appl. Phys. 112, 013504 (2012)CrossRefGoogle Scholar
  33. 33.
    B.H. Zhang, AIP Adv. 4, 017128 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Chroneos, R.V. Vovk, Solid State Ionics 274, 1 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Chroneos, R.V. Vovk, J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-014-2655-y
  36. 36.
    H.M. Kagaya, N. Shoji, T. Soma, Phys. Stat. Solidi B 139, 417 (1987)CrossRefGoogle Scholar
  37. 37.
    R. Krishnan, R. Srinivasan, S. Deverayanan, Thermal Expansion of Crystals (Pergamon Press, Oxford, 1979)Google Scholar
  38. 38.
    V. Hadjicontis, K. Eftaxias, J. Phys. Chem. Solids 52, 437 (1991)CrossRefGoogle Scholar
  39. 39.
    K. Eftaxias, V. Hadjicontis, Phys. Stat. Solidi B 160, K9 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Physics DepartmentV. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations