Spray deposited Cu2ZnSnS4 nanostructured absorber layer: a promising candidate for solar cell applications

  • M. Adelifard
  • R. Torkamani


Cu2ZnSnS4 (CZTS) absorber layers have been deposited via a spray pyrolysis technique without sulfurization process. Spray precursor solutions were prepared with different zinc to tin ratios, and the effects on film growth, structural, compositional, morphological, optical and electrical properties were investigated. The formation of kesterite structure with (112), (220) and (116) planes in the films was confirmed using X-ray diffraction measurements. AFM analysis revealed a smooth, compact and crack-free morphology. The estimated absorption coefficient was close to 105 cm−1 in the visible region for all CZTS films, and the values obtained for the optical band gap energy of the films were between 1.30 and 1.46 eV. The electrical studies showed that all these samples had a p-type conductivity, and the free hole density and mobility reduced with increasing the Zn/Sn molar ratio compatible with the shifts in the transmittance and reflectance spectra.


Spray Pyrolysis Technique Spray Pyrolysis Method CZTS Thin Film CZTS Film Precursor Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, A.N. Tiwari, Thin Solid Films 480, 486 (2005)CrossRefGoogle Scholar
  2. 2.
    Y. Hiral, Y. Kurokawa, A. Yamada, Jpn. J. Appl. Phys. 53, 3420 (2014)Google Scholar
  3. 3.
    S.R. Taylor, S.M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific Publication, Oxford, 1985), p. 1Google Scholar
  4. 4.
    Y.X. Zhao, C. Burda, Energy Environ. Sci. 5, 5564 (2012)CrossRefGoogle Scholar
  5. 5.
    T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Jpn. J. Appl. Phys. 1(44), 783 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kotschau, S. Schorr, H.W. Schoke, Thin Solid Films 517, 2524 (2009)CrossRefGoogle Scholar
  7. 7.
    S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Moriya, K. Tanaka, H. Uchiki, J. Appl. Phys. 47, 602 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)CrossRefGoogle Scholar
  10. 10.
    N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012)CrossRefGoogle Scholar
  11. 11.
    J.J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 10, 639 (2008)CrossRefGoogle Scholar
  12. 12.
    C.P. Chan, H. Lam, C. Surya, Sol. Energy Mater. Sol. Cells 94, 207 (2010)CrossRefGoogle Scholar
  13. 13.
    J.J. Scragg, P.J. Dale, L.M. Peter, Thin Solid Films 517, 2481 (2009)CrossRefGoogle Scholar
  14. 14.
    N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 171 (1996)CrossRefGoogle Scholar
  15. 15.
    Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Phys. Status Solidi A 207, 149 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabatade, T. Torimoto, J. Mater. Chem. 20, 5319 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Espindola-Rodriguez, M. Placidi, O. Vigil-Galán, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, D. Sylla, E. Saucedo, A. Pérez-Rodríguez, Thin Solid Films 535, 67 (2013)CrossRefGoogle Scholar
  19. 19.
    N.M. Shinde, R.J. Deokate, C.D. Lokhande, J. Anal. Appl. Pyrolysis 100, 12 (2013)CrossRefGoogle Scholar
  20. 20.
    K. Tanaka, M. Kato, H. Uchiki, J. Alloys Compd. 616, 492 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Abusina, H. Moutinho, M. Al-Jassim, C. Dehart, M. Matin, J. Mater. Sci. Mater. Electron. 43, 3145 (2014)CrossRefGoogle Scholar
  22. 22.
    W. Schafer, R. Nitsche, Mater. Res. Bull. 9, 645 (1974)CrossRefGoogle Scholar
  23. 23.
    H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Exp. 1, 041201 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Köts-chau, H.W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Thin Solid Films 517, 2511 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Sol. Energy Mater. Sol. Cells 98, 110 (2012)CrossRefGoogle Scholar
  27. 27.
    P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273 (2007)CrossRefGoogle Scholar
  28. 28.
    F. Demichelis, G. Kaniadakis, A. Tagliaferro, E. Tresso, Appl. Opt. 26, 1737 (1987)CrossRefGoogle Scholar
  29. 29.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971)Google Scholar
  30. 30.
    M.A. Butler, J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  31. 31.
    S. Thiruvenkadama, D. Jovina, A. Leo Rajesh, Sol. Energy 106, 166 (2014)CrossRefGoogle Scholar
  32. 32.
    T. Tanaka, T. Nagatomo, T. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, J. Phys. Chem. Solids 66, 1978 (2005)CrossRefGoogle Scholar
  33. 33.
    K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, Thin Solid Films 515, 5997 (2007)CrossRefGoogle Scholar
  34. 34.
    L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)Google Scholar
  35. 35.
    Y. Rodriguez-Lazcano, H. Martinez, M. Calixto-Rodriguez, A. Nunez, Rodriguez. Thin Solid Films 517, 5951 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of PhysicsDamghan UniversityDamghanIran

Personalised recommendations