Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties

  • Liang Huang
  • Pengli Zhu
  • Gang Li
  • Fengrui Zhou
  • Daoqiang Lu
  • Rong Sun
  • Chingping Wong


Epoxy composites, with boron nitride spheres (s-BN) and flakes (f-BN) as fillers were prepared. The effect of filler morphology, content, and crystallization of BN particles on the thermal conductivity, thermo-mechanical and dielectric properties of the composites were investigated. At the same loading level, s-BN with smaller size and larger surface area led to much more significant increase in the glass transition temperature (T g ), reduction in the coefficient of thermal expansion and lower storage modulus (E′), while much higher thermal conductivities were observed in epoxy composites containing f-BN, owing to the larger aspect ratio and better crystallization. In addition, the introduction of BN fillers only did slightly increase on the dielectric constant and dielectric loss of the epoxy resin. We believe, the BN enhanced epoxy composites, with significantly improved thermal conductivity and thermo-mechanical properties, yet maintaining low dielectric constant and dielectric loss at the same time, have great application potential in the microelectronic insulation industry.


Dielectric Loss Boron Nitride High Thermal Conductivity Epoxy Matrix Epoxy Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Basic Research Program of China (973 Program) (2015CB057206), National Natural Science Foundation of China (21101165), Guangdong Innovative Research Team Program (Nos. 2011D052 and KYPT20121228160843692), Shenzhen Electronic Packaging Materials Engineering Laboratory (2012-372), Shenzhen Basic Research Plan (JC201005270372A and GJHS20120702091802836).


  1. 1.
    C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, T.M. Lee, Carbon 49, 5107 (2011)CrossRefGoogle Scholar
  2. 2.
    J.G. Park, Q.F. Cheng, J. Lu, J.W. Bao, S. Li, Y. Tian, Z.Y. Liang, C. Zhang, B. Wang, Carbon 50, 2083 (2012)CrossRefGoogle Scholar
  3. 3.
    P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. Part A Appl. Sci. Manuf. 41, 1345 (2010)CrossRefGoogle Scholar
  4. 4.
    S.L. Wang, Y. Cheng, R.R. Wang, J. Sun, L. Gao, ACS Appl. Mater. Interfaces. 6, 6481 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.C. Zhou, L. Wang, H. Zhang, Y.Y. Bai, Y.J. Niu, H. Wang, Appl. Phys. Lett. 101, 012903 (2012)CrossRefGoogle Scholar
  6. 6.
    N. Balachander, I. Seshadri, R.J. Mehta, L.S. Schadler, T. Borca-Tasciuc, P. Keblinski, G. Ramanath, Appl. Phys. Lett. 102, 093117 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Yang, M.Y. Gu, Compos. Part A Appl. Sci. Manuf. 41, 215 (2010)CrossRefGoogle Scholar
  8. 8.
    C.Y. Zhi, Y. Bando, C.C. Tang, D. Golberg, Mater. Sci. Eng. R. 70, 92 (2010)CrossRefGoogle Scholar
  9. 9.
    W.Y. Peng, X.Y. Huang, J.H. Yu, P.K. Jiang, W.H. Liu, Compos. Part A: Appl. Sci. Manuf. 41, 1201 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Qian, J.H. Yu, C. Wu, X. Zhai, P.K. Jiang, RSC Adv. 3, 17373 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Kusunose, T. Yagi, S.H. Firoz, T. Sekino, J. Mater. Chem. A. 1, 3440 (2013)CrossRefGoogle Scholar
  12. 12.
    L.J. Fang, C. Wu, R. Qian, L.Y. Xie, K. Yang, P.K. Jiang, RSC Adv. 4, 21010 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Jan, P. May, A.P. Bell, A. Habib, U. Khan, J.N. Coleman, Nanoscale 6, 4889 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Liu, X.S. Mo, H.B. Gan, T.Y. Guo, X.B. Wang, B. Chen, J. Chen, S.Z. Deng, N.S. Xu, T. Sekiguchi, D. Golberg, Y. Bando, Sci. Rep. 4, 4211 (2014)Google Scholar
  15. 15.
    C.Y. Zhi, Y. Bando, C.C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)CrossRefGoogle Scholar
  16. 16.
    C.Y. Zhi, Y.B. Xu, Y. Bando, D. Golberg, ACS Nano 5, 6571 (2011)CrossRefGoogle Scholar
  17. 17.
    B.H. Xie, X. Huang, G.J. Zhang, Compos. Sci. Technol. 85, 98 (2013)CrossRefGoogle Scholar
  18. 18.
    J.H. Yu, X.Y. Huang, C. Wu, X.F. Wu, G.L. Wang, P.K. Jiang, Polymer 53, 471 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Fujihara, H.-B. Cho, T. Nakayama, T. Suzuki, W.H. Jiang, H. Suematsu, H.D. Kim, K. Niihara, J. Am. Ceram. Soc. 95, 369 (2012)CrossRefGoogle Scholar
  20. 20.
    X.L. Zeng, S.H. Yu, R. Sun, J. Appl. Polym. Sci. 128, 1353 (2013)Google Scholar
  21. 21.
    V. Salles, S. Bernard, R. Chiriac, P. Miele, J. Eur. Ceram. Soc. 32, 1867 (2012)CrossRefGoogle Scholar
  22. 22.
    C.C. Tang, Y. Bando, D. Golberg, Chem. Commun. 23, 2826 (2002)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, G. Lian, S.J. Zhang, D.L. Cui, Q.L. Wang, CrystEngComm 14, 4670 (2012)CrossRefGoogle Scholar
  24. 24.
    S.J. Zhang, G. Lian, H.B. Si, J. Wang, X. Zhang, Q.L. Wang, D. Cui, J. Mater. Chem. A 1, 5105 (2013)CrossRefGoogle Scholar
  25. 25.
    C.H. Lee, M. Xie, V. Kayastha, J. Wang, Y.K. Yap, Chem. Mater. 22, 1782 (2010)CrossRefGoogle Scholar
  26. 26.
    B. Zhong, X.X. Huang, G.W. Wen, L. Xia, H.M. Yu, H.W. Bai, J. Phys. Chem. C 114, 21165 (2010)CrossRefGoogle Scholar
  27. 27.
    J.L. Wang, Y.L. Gu, Z.L. Li, X.W. Du, Z.X. Zhang, W.M. Wang, Y.C. Wang, H. Wang, Z.Y. Fu, CrystEngComm 16, 2746 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Zhong, Y. Wu, X.X. Huang, G.W. Wen, H.M. Yu, T. Zhang, CrystEngComm 13, 819 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Zhang, G. Wen, L. Xia, X.X. Huang, B. Zhong, X.D. Zhang, H.W. Bai, H.M. Yu, Scr. Mater. 63, 415 (2010)CrossRefGoogle Scholar
  30. 30.
    L.C. Tang, H. Zhang, S. Sprenger, L. Ye, Z. Zhang, Compos. Sci. Technol. 72, 558 (2012)CrossRefGoogle Scholar
  31. 31.
    I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Nano Lett. 13, 550 (2013)CrossRefGoogle Scholar
  32. 32.
    C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, Carbon 55, 116 (2013)CrossRefGoogle Scholar
  33. 33.
    L.H. Sinh, J.M. Hong, B.T. Son, N.N. Trung, J.Y. Bae, Polym. Compos. 33, 2140 (2012)CrossRefGoogle Scholar
  34. 34.
    H.C. Wu, M. Rogalski, M.R. Kessler, ACS Appl. Mater. Interfaces. 5, 9478 (2013)CrossRefGoogle Scholar
  35. 35.
    L.Y. Ren, K. Pashayi, H.R. Fard, S.P. Kotha, T. Borca-Tasciuc, R. Ozisik, Compos. Part B Eng. 58, 228 (2014)CrossRefGoogle Scholar
  36. 36.
    G.D. Smith, D. Bedrov, L.W. Li, O. Byutner, J. Chem. Phys. 117, 9478 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Liang Huang
    • 1
    • 2
  • Pengli Zhu
    • 1
  • Gang Li
    • 1
  • Fengrui Zhou
    • 1
  • Daoqiang Lu
    • 1
  • Rong Sun
    • 1
  • Chingping Wong
    • 3
    • 4
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhenChina
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Department of Electronic EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations